廊坊燕京职业技术学院《文字与标志设计》2023-2024学年第一学期期末试卷_第1页
廊坊燕京职业技术学院《文字与标志设计》2023-2024学年第一学期期末试卷_第2页
廊坊燕京职业技术学院《文字与标志设计》2023-2024学年第一学期期末试卷_第3页
廊坊燕京职业技术学院《文字与标志设计》2023-2024学年第一学期期末试卷_第4页
廊坊燕京职业技术学院《文字与标志设计》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第1页,共3页廊坊燕京职业技术学院

《文字与标志设计》2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、图像去模糊是计算机视觉中的一个难题。假设一张图像由于相机抖动而产生模糊,以下哪种去模糊方法可能需要对模糊核有较为准确的估计?()A.基于深度学习的去模糊方法B.盲去卷积方法C.维纳滤波去模糊方法D.均值滤波去模糊方法2、在计算机视觉的图像分类任务中,假设数据集存在类别不平衡问题,某些类别的样本数量远远少于其他类别。以下哪种方法可以缓解这种不平衡对分类模型的影响?()A.对少数类进行过采样或对多数类进行欠采样B.只使用多数类的样本进行训练C.不考虑类别不平衡,直接训练模型D.随机选择样本进行训练3、在计算机视觉的图像超分辨率任务中,假设要将一张低分辨率图像恢复为高分辨率图像。以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的方法简单快速,但恢复出的图像细节不够清晰B.基于深度学习的方法能够生成逼真的高分辨率图像,但需要大量的训练数据和计算资源C.图像超分辨率技术可以无限制地提高图像的分辨率,不受硬件限制D.所有的图像超分辨率方法都能够完全恢复出原始高分辨率图像的所有信息4、在计算机视觉的图像超分辨率重建中,假设我们要将低分辨率的图像重建为高分辨率图像,同时保持图像的细节和纹理。以下哪种深度学习架构可能在这方面表现较好?()A.卷积神经网络(CNN)B.循环神经网络(RNN)C.生成对抗网络(GAN)D.自动编码器(Autoencoder)5、在计算机视觉的场景理解任务中,假设要理解一个室内场景的布局和功能,例如判断是办公室还是客厅。以下哪种信息对于准确理解场景是至关重要的?()A.物体的类别和位置B.图像的颜色分布C.图像的拍摄角度D.随机选择图像中的部分区域进行分析6、在计算机视觉的图像超分辨率重建中,提高低分辨率图像的清晰度。假设要将一张模糊的图像重建为清晰的高分辨率图像,以下关于图像超分辨率重建方法的描述,哪一项是不正确的?()A.基于插值的方法通过在像素之间插入新的值来增加图像的分辨率,但可能会导致图像模糊B.基于深度学习的方法能够学习低分辨率图像和高分辨率图像之间的映射关系,重建出更清晰的图像C.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制D.为了获得更好的重建效果,可以结合多种超分辨率重建方法或使用先验知识7、在计算机视觉中,特征提取是非常关键的一步。假设我们要从图像中提取有意义的特征,用于后续的处理和分析,以下关于特征提取方法的描述,哪一项是不正确的?()A.SIFT(尺度不变特征变换)和SURF(加速稳健特征)是常用的局部特征描述子,对图像的旋转、缩放和光照变化具有一定的不变性B.HOG(方向梯度直方图)特征通过计算图像局部区域的梯度方向分布来描述图像,常用于行人检测C.深度学习中的自动特征提取,例如通过卷积神经网络学习到的特征,比手工设计的特征更具有代表性和判别力D.特征提取的结果对后续的图像处理任务影响不大,不同的特征提取方法可以得到相似的处理效果8、计算机视觉中的视觉跟踪算法常用于跟踪运动目标。假设要跟踪一只在森林中奔跑的动物,以下关于视觉跟踪算法的描述,哪一项是不正确的?()A.基于模型的跟踪算法通过建立目标的模型来预测其位置和状态B.基于特征的跟踪算法依赖于目标的显著特征进行跟踪C.视觉跟踪算法在目标发生快速变形或完全遮挡时仍能保持准确跟踪D.结合多种线索和信息的融合跟踪算法可以提高跟踪的稳定性和可靠性9、在计算机视觉的姿态估计任务中,假设要估计一个物体在三维空间中的姿态,例如估计一个机器人手臂的关节角度。以下哪种技术或方法可能被用于实现这一目标?()A.基于立体视觉的方法,通过多个相机的观测B.利用深度学习模型直接预测姿态参数C.仅根据物体的外观形状进行估计D.随机猜测物体的姿态10、当利用计算机视觉进行图像去模糊任务,恢复清晰的图像,以下哪种先验知识或约束可能有助于解决这个问题?()A.自然图像的梯度稀疏性B.图像的低频成分C.图像的边缘信息D.以上都是11、当处理低光照条件下拍摄的图像时,为了增强图像的亮度和对比度,同时减少噪声,以下哪种图像处理方法可能更合适?()A.直方图均衡化B.伽马校正C.简单地增加图像的整体亮度值D.不进行任何处理,保留低光照效果12、在计算机视觉的姿态估计任务中,需要确定物体在三维空间中的方向和位置。假设我们要估计一个机器人手臂的姿态,以下哪种技术通常被用于获取准确的姿态信息?()A.基于视觉标记的姿态估计B.基于深度学习的姿态估计C.基于几何约束的姿态估计D.基于惯性测量单元(IMU)的姿态估计13、在计算机视觉的视频监控系统中,异常事件检测是重要功能之一。假设要在一个仓库的监控视频中检测出异常的人员活动或物品移动。以下哪种异常事件检测方法在处理这种大规模视频数据时能够更有效地发现异常?()A.基于规则的检测B.基于统计模型的检测C.基于深度学习的检测D.基于人工观察的检测14、图像分类是计算机视觉中的常见任务之一。对于图像分类模型的训练,以下说法错误的是()A.需要大量有标注的图像数据来学习不同类别的特征B.卷积神经网络(CNN)在图像分类任务中表现出色C.模型的训练过程是不断调整参数以最小化预测误差的过程D.图像分类模型一旦训练完成,就无法再对新的类别进行学习和分类15、图像分类是计算机视觉的基础任务之一。假设要对大量的自然风景图片进行分类,包括山脉、森林、海滩等不同类型,同时图片可能存在不同的拍摄角度、光照条件和季节变化。为了能够准确地对这些图片进行分类,以下哪种特征提取方法与分类算法的组合最为有效?()A.SIFT特征+支持向量机B.HOG特征+决策树C.卷积神经网络自动提取特征+深度学习分类器D.颜色直方图特征+朴素贝叶斯二、简答题(本大题共4个小题,共20分)1、(本题5分)说明计算机视觉在地震监测中的作用。2、(本题5分)描述计算机视觉在地质勘探中的应用。3、(本题5分)说明计算机视觉在手术导航中的应用。4、(本题5分)解释计算机视觉在典当行业中的作用。三、应用题(本大题共5个小题,共25分)1、(本题5分)使用目标跟踪算法,对游泳比赛中的运动员转身动作进行分析和评估。2、(本题5分)对体育赛事的视频进行慢动作分析,辅助裁判做出准确判罚。3、(本题5分)基于深度学习的图像生成模型,生成具有特定风格的艺术图像。4、(本题5分)利用深度学习算法,对不同种类的肉干图像进行分类。5、(本题5分)利用图像增强技术,提升雾霾天气下拍摄图像的清晰度。四、分析题(本大题共4个小题,共40分)1、(本题10分)剖析某电视剧的粉丝见面会活动海报设计,讨论其如何通过视觉元素吸引粉丝参加见面会。2、(本题10分)分析某美容院的男士护理系列宣传物料设计,探讨其男性特色、护理项目

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论