2025年人教版高一数学上册阶段测试试卷含答案_第1页
2025年人教版高一数学上册阶段测试试卷含答案_第2页
2025年人教版高一数学上册阶段测试试卷含答案_第3页
2025年人教版高一数学上册阶段测试试卷含答案_第4页
2025年人教版高一数学上册阶段测试试卷含答案_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教版高一数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共7题,共14分)1、设非空集合且若则这样的集合共有()个.A.B.C.D.2、【题文】若集合则【】.A.B.C.D.3、【题文】函数的图象是()4、【题文】式子的值为()A.B.C.D.5、【题文】如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为()A.B.C.D.6、已知函数在上单调递减,则的取值范围是()A.B.C.D.7、设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定评卷人得分二、填空题(共6题,共12分)8、对于集合A,B,我们把集合{x|x∈A,且x∉B}叫做集合A与B的差集,记作A-B.若集合A,B都是有限集,设集合A-B中元素的个数为f(A-B),则对于集合A={1,2,3},B={1,a},有f(A-B)____.9、已知函数f(x)的定义域为[0,2],则f(2x)的定义域为____.10、已知向量满足与的夹角为则____。11、方程的解的个数是12、若扇形的周长为12cm,圆心角为2rad,则该扇形的面积为______cm2.13、已知AB

是隆脩Ox2+y2=16

上两点,且|AB|=6

若以AB

为直径的圆M

恰经过点C(1,鈭�1)

则圆心M

的轨迹方程是______.评卷人得分三、证明题(共7题,共14分)14、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.15、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.16、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:

(1)AD=AE

(2)PC•CE=PA•BE.17、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.18、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.19、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.

(1)求证:E为的中点;

(2)若CF=3,DE•EF=,求EF的长.20、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、计算题(共1题,共6分)21、解不等式组,求x的整数解.评卷人得分五、综合题(共4题,共16分)22、已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中实数a、b、c满足a>b>c,a+b+c=0.

(1)求证:两函数的图象相交于不同的两点A;B;

(2)求线段AB在x轴上的射影A1B1长的取值范围.23、设直线kx+(k+1)y-1=0与坐标轴所围成的直角三角形的面积为Sk,则S1+S2++S2009=____.24、(1)如图;在等腰梯形ABCD中,AD∥BC,M是AD的中点;

求证:MB=MC.

(2)如图;在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).

①画出△OAB向下平移3个单位后的△O1A1B1;

②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π).25、已知抛物线y=-x2+2mx-m2-m+2.

(1)判断抛物线的顶点与直线L:y=-x+2的位置关系;

(2)设该抛物线与x轴交于M;N两点;当OM•ON=4,且OM≠ON时,求出这条抛物线的解析式;

(3)直线L交x轴于点A,(2)中所求抛物线的对称轴与x轴交于点B.那么在对称轴上是否存在点P,使⊙P与直线L和x轴同时相切?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题(共7题,共14分)1、C【分析】试题分析:依题意,元素是以和及的小团体的形式出现在集合中,可在这三个小团体中任选一个组成集合则这样的集合有个;可在这三个小团体中任选两个组成集合则这样的集合也有个;可把这三个小团体中都选入集合则这样的集合只有个,所以满足条件的集合共有故选择C.考点:集合之间的包含关系.【解析】【答案】C2、A【分析】【解析】

试题分析:根据题意,由于集合=={x|},={x|},那么可知选A.

考点:交集运算。

点评:解决的关键是根据不等式的求解来得到集合,同时结合交集的定义求解,属于基础题。【解析】【答案】A3、C【分析】【解析】

试题分析:因为函数那么利用分段函数的概念和图像可知,满足题意的图像因为定义域x>1;,排除A,B,D,然后选C.

考点:本试题主要考查了对数函数的图像以及图像变换的运用。

点评:解决该试题的关键是对于图像的求解,一般是运用性质或者特殊点法来排除得到结论,也可以去掉绝对值,分段函数得到,或者利用图像的对称变化得到。【解析】【答案】C4、A【分析】【解析】略【解析】【答案】A5、D【分析】【解析】

如图,设B1D1的中点为O1,连接C1O1、BO1;

则C1O1⊥B1D1、C1O1⊥BB1,

∴C1O1⊥平面BDD1B1.

∴∠O1BC1即为所求.

∴sin∠O1BC1===.【解析】【答案】D6、D【分析】【解答】由已知得又故选D.

【分析】三角函数的单调性.7、B【分析】【解答】解析:∵f(1.5)•f(1.25)<0;由零点存在定理,得;

∴方程的根落在区间(1.25;1.5).

故选B.

【分析】由已知“方程3x+3x﹣8=0在x∈(1,2)内近似解”,且具体的函数值的符号也已确定,由f(1.5)>0,f(1.25)<0,它们异号.二、填空题(共6题,共12分)8、略

【分析】

根据题意;A-B={x|x∈A,且x∉B};

分2种情况讨论:①a=2;3时;A-B={1},有1个元素,则f(A-B)=1;

②a≠1;2、3时;A-B={1,a},有2个元素,则f(A-B)=2;

即f(A-B)=

故答案为.

【解析】【答案】根据题意;分析可得差集A-B由全部属于A不属于B的元素组成,进而对a分两种情况讨论,①a=2;3时,②a≠1、2、3时,分别得出A-B,易得答案.

9、略

【分析】

因为函数f(x)的定义域为[0;2];

所以0≤2x≤2;

所以0≤x≤1;

所以f(2x)的定义域为[0;1];

故答案为[0;1]

【解析】【答案】根据函数f(x)的定义域为[0;2],令0≤2x≤2,求出x的范围即得到f(2x)的定义域.

10、略

【分析】【解析】试题分析:考点:本题主要考查向量的数量积。【解析】【答案】711、略

【分析】在同一坐标系作出与的图象,可知有7个交点。【解析】【答案】712、略

【分析】解:设扇形半径为r,面积为s,圆心角是α,则α=2,弧长为αr;

则周长12=2r+αr=2r+2r=4r,∴r=3;

扇形的面积为:s=αr2=×2×9=9(cm2);

故答案为:9.

先求出扇形的弧长,利用周长求半径,代入面积公式s=αr2进行计算.

本题考查扇形的弧长公式、和面积公式的应用.【解析】913、略

【分析】解:因为点C(1,鈭�1)

在以AB

为直径的圆M

上,所以CM=12AB=3

从而点M

在以C

为圆心,以3

为半径的圆上.

则可得(x鈭�1)2+(y+1)2=9

故答案为:(x鈭�1)2+(y+1)2=9

根据题意可推断出CM=12AB=3

进而断定点M

在以C

为圆心,以3

为半径的圆上.

本题主要考查了圆的标准方程,考查直线与圆的位置关系.

解题的关键是把问题转化为以圆心M

问题上.【解析】(x鈭�1)2+(y+1)2=9

三、证明题(共7题,共14分)14、略

【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;

(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F为AC中点;

∴cosC==.

答:cosC的值是.

(3)BF过圆心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.15、略

【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;

则AC=AE;AB=5DE;

又∵G是AB的中点;

∴AG=ED.

∴ED2=AF•AE;

∴5ED2=AF•AE;

∴AB•ED=AF•AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.16、略

【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;

即可得到结论;

(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,

∵PC是⊙O的切线;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB为⊙O的直径;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC•CE=PA•BE.17、略

【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;

(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F为AC中点;

∴cosC==.

答:cosC的值是.

(3)BF过圆心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.18、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.19、略

【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE

OA=OE=>∠OAE=∠OEA

DE切圆O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

⇒OE∥AD

=>E为的中点.

(2)解:连CE;则∠AEC=90°,设圆O的半径为x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圆O于E=>△FCE∽△FEA

∴,

即DE•EF=AD•CF

DE•EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC•FA=3x(3+2)=15

∴EF=20、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.四、计算题(共1题,共6分)21、略

【分析】【分析】解第一个不等式得,x<1;解第二个不等式得,x>-7,然后根据“大于小的小于大的取中间”即可得到不等式组的解集.【解析】【解答】解:解第一个不等式得;x<1;

解第二个不等式得;x>-7;

∴-7<x<1;

∴x的整数解为:-6,-5,-4,-3,-2,-1,0.五、综合题(共4题,共16分)22、略

【分析】【分析】(1)首先将两函数联立得出ax2+2bx+c=0;再利用根的判别式得出它的符号即可;

(2)利用线段AB在x轴上的射影A1B1长的平方,以及a,b,c的符号得出|A1B1|的范围即可.【解析】【解答】解:(1)联立方程得:ax2+2bx+c=0;

△=4b2-4ac

=4(b2-ac)

∵a>b>c,a+b+c=0;

∴a>0;c<0;

∴△>0;

∴两函数的图象相交于不同的两点;

(2)设方程的两根为x1,x2;则。

|A1B1|2=(x1-x2)2=(x1+x2)2-4x1x2;

=(-)2-==;

=4[()2++1];

=4[(+)2+];

∵a>b>c,a+b+c=0;

∴a>-(a+c)>c;a>0;

∴-2<<-;

此时3<A1B12<12;

∴<|A1B1|<2.23、略

【分析】【分析】令x=0,得y=,令y=0,得x=,则Sk=•=(-),根据三角形面积公式求和.【解析】【解答】解:依题意,得直线与y轴交于(0,),与x轴交于(;0),则

则Sk=•=(-);

S1+S2++S2009

=(1-+-++-)

=(1-)

=.

故答案为:.24、略

【分析】【分析】(1)首先利用全等三角形的判定证明△ABM和△DCM即可求解.【解析】【解答】(1)证明:∵四边形ABCD是等腰梯形;

∴AB=DC;∠A=∠D.

∵M是AD的中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论