《建筑结构设计中的竖向荷载下内力计算案例综述》5500字_第1页
《建筑结构设计中的竖向荷载下内力计算案例综述》5500字_第2页
《建筑结构设计中的竖向荷载下内力计算案例综述》5500字_第3页
《建筑结构设计中的竖向荷载下内力计算案例综述》5500字_第4页
《建筑结构设计中的竖向荷载下内力计算案例综述》5500字_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

建筑结构设计中的竖向荷载下内力计算案例综述1.1恒载作用下的内力计算1.分层的基本假定[10]:(1)在竖向荷载作用下,框架侧移小,可忽略不计。(2)每层梁上的荷载对其它各层梁的影响很小,可忽略不计。因此,每层梁上的荷载只在该层梁及与该层梁相连的柱上分配和传递。2.内力计算下面采用分层法计算杆端弯矩。杆端弯矩以绕杆件顺时针方向旋转为正,柱轴力以受压为正。(1)计算杆端弯矩分配系数以第六层的边节点和中节点为例子,说明杆端弯矩分配系数的计算方法,计算分配系数时,除底层柱以外其它各层柱子线刚度均乘0.9的折减系数。结构可视为对称结构,该榀框架所受线荷载和弯矩对称,所以可取半榀框架。SBC=SCB=4iBC=4×1.31=5.24SCD=2iCD=2×3.522=7.044S柱B=S柱C=S柱D=S柱E=0.9×4i柱=0.9×4×0.975=3.51μbc=Sbc/Sbc+S柱b=5.24/5.24+3.51=0.599μ柱b=S柱b/Sbc+S柱b=3.51/5.24+3.51=0.401μcb=5.24/5.24+3.51+7.044=0.332μcd=7.044/5.24+3.51+7.044=0.446μ柱c=3.51/5.24+3.51+7.044=0.222同理可求出其它各层各节点的杆端弯矩分配系数表2-12弯矩分配系数汇总表·A柱B柱上柱下柱右梁左梁上柱下柱右梁600.4010.5990.33200.2220.44650.2850.3150.40.2580.2160.2140.31240.3110.3110.3780.2570.2110.2140.31830.3110.3110.3780.2570.2110.2140.31820.3110.3110.3780.2570.2110.2140.31810.3260.2320.4420.2550.2230.1720.350层次C柱D柱左梁上柱下柱右梁左梁上柱下柱60.44600.2220.3320.59900.40150.3240.2150.2010.2540.3750.3100.31540.3230.2180.2010.2530.3730.3130.31330.3230.2180.2010.2530.3730.3130.31320.3230.2180.2010.2530.3730.3130.31310.3380.2290.1680.2670.4040.3390.257(2)计算杆件的固端弯矩以第六层的边跨梁和中间梁为例,说明杆件的固端弯矩的计算方法。将梯形分布荷载按等效的原则折算成均布的荷载。梯形的荷载计算公式:qe=(1-2α2+α3)q`,其中α=lo1/2lo2=3.9/(2×7.6)=0.257q`为梯形分布荷载的最大值边跨等效均布荷载后BC(DE)跨梁:qe=23.01×(1-2×0.2572+0.2573)=20.361kN/mq=qe+q1=20.361+5.644=26.005kN/m中间跨均布荷载:q=5.644kN/m边跨梁的固端弯矩MFBC=-1/12ql2=-1/12×26.005×82=-138.693kN·mMFCB=1/12ql2=138.693kN·mMFDE=-1/12ql2=-138.693kN·mMFED=1/12ql2=138.693kN·m中跨梁的固端弯矩MFCD=-1/12ql2=-1/12×5.644×2.82=-3.687kN·mMFDC=1/12ql2=3.687kN·m同理可求出其余各楼层梁的固端弯矩,计算结果见下表:表2-13恒载作用下的固端弯矩(kN·m)层次ABBABCCBCDDC6-138.693138.693-3.6873.687-138.693138.6935-139.763139.763-3.3673.367-139.763139.7634-139.763139.763-3.3673.367-139.763139.7633-139.763139.763-3.3673.367-139.763139.7632-139.763139.763-3.3673.367-139.763139.7631-139.763139.763-3.3673.367-139.763139.763(3)计算杆端弯矩采用分层法计算杆端弯矩。恒载作用下框架各节点的弯矩分配以及杆端分配弯矩的传递过程在下图中进行。由恒载计算简图可以看出结构对称,可取半边结构进行力矩分配。图2-8恒荷载作用下框架梁柱端弯矩分层法表2-14柱端弯矩汇总表(kNm)层次A柱上A柱下B柱上B柱下C柱上C柱下D柱上D柱下657.13745.677-53.384-39.57253.38439.572-57.137-45.677542.99644.005-34.956-36.22334.95636.223-42.996-44.005443.51243.054-36.153-36.17236.15336.172-43.512-43.054343.55342.837-36.172-35.96836.17235.968-43.553-42.837244.02548.910-36.725-41.10036.72541.100-44.025-48.910130.25515.128-30.648-15.32430.64815.324-30.255-15.128表2-15梁端弯矩汇总表(kNm)层次A柱右B柱左B柱右C柱左C柱右D柱左6-105.178122.287-30.04330.043-122.287105.1785-123.538134.453-18.01518.015-134.453123.5384-122.375132.965-18.67818.678-132.965122.3753-122.329132.944-18.68918.689-132.944122.3292-122.578133.172-18.56718.567-133.172122.5781-115.889129.178-21.64821.648-129.178115.889(4)梁跨中弯矩计算(以第六层梁为例)AB跨:q=q1+q均=[1-4/3×3.92/(2×7.4)2]×23.06+5.685=26.8376kN/mM=1/8ql2-(57.137+45.677)/2=1/8×26.8376×7.62-51.407=89.942kN·mBC跨:q=q均=5.685kN/mM=1/8ql2-(35.375+35.375)/2=1/8×5.684×2.82-53.384=-24.512kN·m同理可求出其余各层梁的跨中弯矩,计算结果见下表:表2-16梁跨中弯矩汇总表(kNm)层次ABBCCD689.942-24.51289.942586.377-13.11586.377487.703-13.77887.703387.736-13.78987.736287.498-13.66787.498192.839-16.74892.839(5)梁端剪力及柱轴力、剪力计算根据作用于梁上的荷载及梁端弯矩,用平衡条件求得梁端剪力。将柱两侧的梁端剪力、节点集中力及柱轴力叠加,得柱轴力。下面以第六层框架梁、柱为例说明梁端剪力及柱轴力的计算过程。1)梁端剪力计算恒载作用下,梁端弯矩引起的剪力计算如下:AB跨:VrBC=-5.684×VlBC=5.153×7.1+23.01×7.1×(1-3.9/14.2)-81.028=74.060kNBC跨:VrCD=-(5.684×2.8×2.8/2+35.375-35.375)/2.8=-7.902kNVlCD=5.684×2.8-7.902=7.902kN同理可求出其余各层梁的剪力,计算结果见下表:表2-17梁端剪力汇总表(kN)层次A柱右B柱左B柱右C柱左C柱右D柱左688.543-93.0457.902-7.90293.045-88.543599.273-102.1457.000-7.000102.145-99.273499.316-102.1027.000-7.000102.102-99.316399.312-102.1067.000-7.000102.106-99.312299.315-102.1037.000-7.000102.103-99.315198.960-102.4587.000-7.000102.458-98.9602)柱轴力及柱剪力计算恒载作用下,第六层A柱的轴力:上端的轴力:NtA=88.54+239.049=360.212kN下端的轴力(计入柱的自重):NbA=360.212+9.642×4=398.300kN柱剪力:VA6=-(42.483+32.950)/3.95=-19.097kN第六层B柱:上端的轴力:NtB=112.121+7.214+81.028=206.97Kn下端的轴力(计入柱的自重):NbC=360.350+9.522×3.95=397.962kN柱剪力:VB6=-(-48.91-42.419)/4=-23.239kN同理可求出其余各层柱的轴力,计算结果见下表:表2-18柱顶轴力汇总表(kN)层次A柱B柱C柱D柱6360.212-206.977408.871-183.1265729.941-338.662835.982-278.13341098.761-471.3541262.086-374.04931467.577-604.0421688.194-469.96921836.396-736.7332114.299-565.88612204.860-869.0692540.759-662.158表2-19柱底轴力汇总表(kN)层次A柱B柱C柱D柱6398.300-168.409447.439-145.0385767.077-301.058873.586-240.99741135.897-433.7501299.690-336.91331504.713-566.4381725.798-432.83321873.532-699.1292151.903-528.75012256.279-817.0022592.826-610.739表2-20柱端剪力汇总表(kN)层次A柱B柱C柱D柱6-25.70423.239-23.23925.7045-22.30818.251-18.25122.3084-22.19618.545-18.54522.1963-22.15118.497-18.49722.1512-23.82919.955-19.95523.8291-8.4048.513-8.5138.404图2-9恒载弯矩图(kN·m)图2-10恒载剪力图(kN)图2-11恒载轴力图(kN)1.2活载作用下的内力计算1.计算单元取计算单元进行计算,同恒载作用下的内力计算。因梁板为整体现浇,边区格按双向板考虑,传给横梁的楼面荷载为梯形荷载(边梁)。其余荷载通过纵梁以集中荷载的形式传给框架梁。因中间板8/2.4=3.3m>3m,故按单向板考虑,楼面荷载以集中荷载的形式作用在柱上。2.内力计算下面采用分层法计算杆端弯矩。杆端剪力以绕杆件顺时针方向旋转为正,柱轴力以受压为正。(1)计算杆端弯矩分配系数计算过程同恒载作用(2)计算杆件固端弯矩以第六层的边跨梁和中间梁为例,说明杆件的固端弯矩的计算方法。将梯形分布荷载按等效的原则折算成均布的荷载。梯形的荷载计算公式:qe=(1-2α2+α3)q`,其中α=lo1/2lo2=3.9/(2×7.6)=-0.257q`为梯形分布荷载的最大值边跨等效均布荷载后BC(DE)跨梁:qe=8.4×(1-0.2572+0.2573)=7.99kN/m中间跨均布荷载:qe=0边跨梁的固端弯矩MFBC=-1/12ql2=-1/12×7.99×7.62=-38.459kN·mMFCB=1/12ql2=38.459kN·mMFDE=-1/12ql2=-38.459kN·mMFED=1/12ql2=38.459kN·m中跨梁的固端弯矩MFCD=-1/12ql2=0MFDC=1/12ql2=0同理可求出其余各楼层梁的固端弯矩,计算结果见下表:表2-21活荷载作用下的固端弯矩(kNm)层次BCCBCDDCDEED6-38.45938.45900-38.45938.4595-38.45938.45900-38.45938.4594-38.45938.45900-38.45938.4593-38.45938.45900-38.45938.4592-38.45938.45900-38.45938.4591-38.45938.45900-38.45938.459(3)计算杆端弯矩采用分层法计算杆端弯矩。活载作用下框架各节点的弯矩分配以及杆端分配弯矩的传递过程在下图中进行。由活载计算简图可以看出结构对称,可取半边结构进行力矩分配。图2-12活荷载作用下框架梁柱端弯矩分层法表2-22柱端弯矩汇总表(kNm)层次A柱上A柱下B柱上B柱下C柱上C柱下D柱上D柱下616.63512.852-14.859-11.00514.85911.005-16.635-12.852511.84512.210-9.717-10.0709.71710.070-11.845-12.210412.07411.946-10.051-10.05610.05110.056-12.074-11.946312.08511.886-10.056-9.99910.0569.999-12.085-11.886212.21513.570-10.209-11.42710.20911.427-12.215-13.57018.3954.198-8.521-4.2618.5214.261-8.395-4.198表2-23梁端弯矩汇总表(kNm)层次A柱右B柱左B柱右C柱左C柱右D柱左6-28.14634.378-7.3397.339-34.37828.1465-34.06036.973-4.0714.071-36.97334.0604-33.64536.557-4.2574.257-36.55733.6453-33.63236.552-4.2604.260-36.55233.6322-33.70136.615-4.2264.226-36.61533.7011-31.84335.504-5.0825.082-35.50431.843(4)梁跨中弯矩计算(以第六层梁为例)BC跨:q=q1+q均=[1-4/3×3.92/(2×7.1)2]×7.8=7.0155kN/mM=1/8ql2-(28.146++34.378)/2=1/8×7.0155×7.62-23.2216=19.591kN·mCD跨:q=0M=-(7.339+7.339)/2=-7.339kN·m同理可求出其余各层梁的跨中弯矩,计算结果见下表:表2-24梁跨中弯矩汇总表(kNm)层次ABBCCD619.591-7.33919.591515.336-4.07115.336415.752-4.25715.752315.761-4.26015.761215.695-4.22615.695117.179-5.08217.179(4)梁端剪力及柱轴力、剪力计算以第六层框架梁、柱为例说明梁端剪力及柱轴力的计算过程。1)梁端剪力计算 活载作用下,梁端弯矩引起的剪力计算如下:BC跨:VrBC=-7.8×VlBC=7.8×7.1×(1-3.9/14.2)-21.102=19.068kNCD跨:VrCD=-(8.919-8.919)/2.8=0kNVlCD=VrCD=0kN同理可求出其余各层梁的剪力,计算结果见下表:表2-25梁端剪力汇总表(kN)层次A柱右B柱左B柱右C柱左C柱右D柱左620.825-22.4650.0000.00022.465-20.825521.262-22.0280.0000.00022.028-21.262421.262-22.0280.0000.00022.028-21.262321.261-22.0290.0000.00022.029-21.261221.262-22.0280.0000.00022.028-21.262121.163-22.1270.0000.00022.127-21.1632)柱轴力及柱剪力计算活载作用下,第六层B柱的轴力:上端的轴力:NtB=20.825+62.43=83.255kN下端的轴力(不计入柱的自重):NbB=83.255kN柱剪力:VB6=-(11.825+8.630)/4=-7.372kN第六层B柱:上端的轴力:NtC=83.225+20.44=103.665kN下端的轴力:NbC=103.665kN柱剪力:VB6=-(-8.3-16.453)/4.0=6.466kN同理可求出其余各层柱的轴力,计算结果见下表:表2-26柱顶轴力汇总表(kN)层次A柱B柱C柱D柱683.225-58.735103.665-41.5755166.887-117.907206.893-82.7134250.549-177.079310.121-123.8513334.210-236.250413.350-164.9902417.872-295.422516.578-206.1281501.435-354.495619.905-247.365表2-27柱底轴力汇总表(kN)层次A柱B柱C柱D柱683.225-58.735103.665-41.5755166.887-117.907206.893-82.7134250.549-177.079310.121-123.8513334.210-236.250413.350-164.9902417.872-295.422516.578-206.1281501.435-354.495619.905-247.365表2-28柱剪力汇总表(kN)层次A柱B柱C柱D柱6-7.3726.466-6.4667.3725-6.1685.074-5.0746.1684-6.1595.156-5.1566.1593-6.1465.142-5.1426.1462-6.6125.548-5.5486.6121-2.3322.367-2.3672.332图2-13活载弯矩图(kN·m)图2-14活载剪力图(kN)图2-15活载轴力图(kN)1.3屋面雪荷载作用下的内力计算1.雪载计算(1)顶层框架梁柱雪载计算1)边跨梁上线荷载计算梯形荷载:3.9×0.4=1.56kN/m均布荷载:02)中跨梁上线荷载计算同活载,为03)边柱集中力计算F=0.4×[3.9×3.9×1/2×1/2×2+(8-3.9+8)×3.9×1/2×1/2×2]=12.48kN4)中柱集中力计算F=0.4×[3.9×3.9×1/2×1/2×2+(8-3.9+8)×3.9×1/2×1/2×2+1/2×2.4×3.9×2]=16.224kN5)边柱集中力矩M=12.48×0.15=1.872kN∙m中柱集中力矩M=16.224×0.15=2.434kN∙m(2)中间层框架梁柱同活载计算2.内力计算采用分层法计算杆端弯矩。杆端弯矩以绕杆件顺时针方向旋转为正,柱轴力以受压为正。(1)计算杆端弯矩分配系数计算过程同活载作用。(2)计算杆件固端弯矩以第六层的边跨梁和中间梁为例,说明杆件的固端弯矩的计算方法。将梯形分布荷载按等效的原则折算成均布的荷载。梯形的荷载计算公式:qe=(1-2α2+α3)q`,其中α=lo1/2lo2=3.9/(2×7.6)=0.257q`为梯形分布荷载的最大值边跨等效均布荷载后BC(DE)跨梁:qe=1.56×(1-0.2572+0.2573)=1.48kN/m中间跨均布荷载:qe=0边跨梁的固端弯矩MFBC=-1/12ql2=-1/12×1.48×7.62=-7.124kN·mMFCB=1/12ql2=7.124kN·mMFDE=-1/12ql2=-7.124kN·mMFED=1/12ql2=7.124kN·m中跨梁的固端弯矩MFCD=MFDC=0同理可求出其余各楼层梁的固端弯矩,计算结果见下表:表2-29雪荷载作用下的固端弯矩(kNm)层次BCCBCDDCDEED6-5.6987.12400--7.1245.6985-38.45938.45900-38.45938.4594-38.45938.45900-38.45938.4593-38.45938.45900-38.45938.4592-38.45938.45900-38.45938.4591-38.45938.45900-38.45938.459(3)计算杆端弯矩采用分层法计算杆端弯矩。取半边结构进行力矩分配。第四、三、二、一层的杆端弯矩计算过程同活载,此处省略。图2-16雪荷载楼面活荷载作用下的框架梁柱端弯矩分层法表2-30柱端弯矩汇总表层次A柱上A柱下B柱上B柱下C柱上C柱下D柱上D柱下613.73512.190-12.252-10.36712.25210.367-13.735-12.190512.15812.210-9.952-10.0709.95210.070-12.158-12.210412.07411.946-10.051-10.05610.05110.056-12.074-11.946312.08511.886-10.056-9.99910.0569.999-12.085-11.886212.21513.570-10.209-11.42710.20911.427-12.215-13.57018.3954.198-8.521-4.2618.5214.261-8.395-4.198表2-31梁端弯矩汇总表层次A柱右B柱左B柱右C柱左C柱右D柱左6-22.89727.740-5.7435.743-27.74022.8975-33.71236.711-4.2124.212-36.71133.7124-33.64536.557-4.2574.257-36.55733.6453-33.63236.552-4.2604.260-36.55233.6322-33.70136.615-4.2264.226-36.61533.7011-31.84335.504-5.0825.082-35.50431.843(4)梁跨中弯矩计算(以第六层梁为例)BC跨:q=q1+q均=[1-4/3×3.92/(2×7.6)2]×1.56=0.912kN/mM=1/8ql2-(5.120+5.332)/2=1/8×0.912×7.62-5.538=6.585kN·mCD跨:q=0M=-(5.743+5.743)/2=-5.743kN·m同理可求出其余各层梁的跨中弯矩,计算结果见下表:表2-32梁跨中弯矩汇总表层次ABBCCD615.364-5.74315.364515.641-4.21215.641415.752-4.25715.752315.761-4.26015.761215.695-4.22615.695117.179-5.08217.179(5)梁端剪力及柱轴力、剪力计算以第六层框架梁、柱为例说明梁端剪力及柱轴力的计算过程。1)梁端剪力计算 雪载作用下,梁端弯矩引起的剪力计算如下:AB跨:VrAB=-1.56×7.6VlAB=1.56×7.6×(1-3.9/14.2)-17.953=16.679kNBC跨:VrBC=-(1.301-1.301)/2.8=0kNVlBC=VrCD=0kN同理可求出其余各层梁的剪力,计算结果见下表:表2-33梁端剪力汇总表(kN)层次A柱右B柱左B柱右C柱左C柱右D柱左616.679-17.9530.0000.00017.953-16.679521.250-22.0400.0000.00022.040-21.250421.262-22.0280.0000.00022.028-21.262321.261-22.0290.0000.00022.029-21.261221.262-22.0280.0000.00022.028-21.262121.163-22.1270.0000.00022.127-21.1632)柱轴力及柱剪力计算雪载作用下,第六层A柱的轴力:上端的轴力:NtB=39.670+27.6=66.599kN下端的轴力(不计入柱的自重):NbB=66.599kN柱剪力:VB6=-(3.375+6.687)/3.95=-2.547kN第六层B柱:上端的轴力:NtC=38.420+9.132=47.07kN下端的轴力:NbC=47.007kN柱剪力:VC6=-(11.23+2.68)/4=5.665同理可求出其余各层柱的轴力,计算结果见下表:表2-34柱顶轴力汇总表(kN)层次A柱B柱C柱D柱666.599-47.00782.913-33.2415150.249-106.167186.153-74.3914233.911-165.339289.381-115.5293317.572-224.510392.610-156.6682401.234-283.682495.838-197.8061484.797-342.755599.165-239.043表2-35柱底轴力汇总表(kN)层次A柱B柱C柱D柱666.599-47.00782.913-33.2415150.249-106.167186.153-74.3914233.911-165.339289.381-115.5293317.572-224.510392.610-156.6682401.234-283.682495.838-197.8061484.797-342.755599.165-239.043表2-36柱端剪力汇总表(kN)层次A柱B柱C柱D柱6-6.4815.655-5.6556.4815-6.2485.134-5.1346.2484-6.1595.156-5.1566.1593-6.1465.142-5.1426.1462-6.6125.548-5.5486.6121-2.3322.367-2.3672.332图2-17雪载弯矩图(kNm)图2-18雪载剪力图(kN)图2-19雪载轴力图(kN)1.4风荷载作用下的内力计算框架结构在风荷载作用下的内力计算方法为D值法。各柱反弯点高度比y按式y=y0+y1+y2+y3确定,柱端剪力和梁端弯矩分别按下式计算:1.柱端弯矩计算以第六层为例第六层A:=15.497×19925.163/125668.20=3.125yh=0.354×4=1.416(1-y)h=(1-0.354)×4=2.584MBMB第六层C柱:==5.033kNyh=0.45×4=1.8(1-y)h=(1-0.45)×4=2.2MCMC同理可求出其它各层各柱的柱端弯矩,计算结果见下表:表2-37柱端弯矩汇总表层次A柱上A柱下B柱上B柱下C柱上C柱下D柱上D柱下63.1911.6814.0813.3394.0813.3393.1911.68155.6524.6247.8317.8317.8317.8315.6524.62448.6927.11112.04312.04312.04312.0438.6927.111310.33710.33715.75215.75215.75215.75210.33710.337212.77312.77319.46319.46319.46319.46312.77312.773117.34531.51427.31633.38627.31633.38617.34531.5142.梁端弯矩计算以第六层B节点为例=0kN·m=1.31/1.31×(3.191+0)=3.191kN·m同理可求出其它梁端弯矩,计算结果见下表:表2-38梁端弯矩汇总表(kN·m)层次A柱右B柱左B柱右C柱左C柱右D柱左63.1911.1062.9752.9751.1063.19157.3333.0288.1428.1423.0287.333413.3165.38814.48614.4865.38813.316317.4487.53520.26020.2607.53517.448223.1109.54725.66825.6689.54723.110130.11812.68234.09734.09712.68230.1183.梁端剪力计算以第六层为例AB:VlBC=VrBC=-(3.191+3.101)/7.6=-0.827kNBC:VlCD=VrCD=-(2.975×2)/2.8=-2.125kN表2-39梁端剪力汇总表(kN)层次A柱右B柱左B柱右C柱左C柱右D柱左6-0.565-0.565-2.125-2.125-0.565-0.5655-1.363-1.363-5.816-5.816-1.363-1.3634-2.461-2.461-10.347-10.347-2.461-2.4613-3.287-3.287-14.471-14.471-3.287-3.2872-4.297-4.297-18.334-18.334-4.297-4.2971-5.632-5.632-24.355-24.355-5.632-5.6324.梁跨中弯矩计算以第六层为例M左+M中+V左×l/2=0M中=0.565×7.6/2-3.112=1.00kN·m表2-40梁跨中弯矩汇总表(kN·m)层次ABBCCD61.0000.000-1.00052.2000.000-2.20044.0000.000-4.00035.0000.000-5.00026.8000.000-6.80018.7000.000-8.7005.柱端轴力计算以第六层为例NB=VB右=-66.599kNNC=VC右-VB右=-30.326+17.327=-47.007kN表2-41柱顶/柱底轴力汇总表(kN)层次A柱B柱C柱D柱666.599-47.00782.913-33.2415150.249-106.167186.153-74.3914233.911-165.339289.381-115.5293317.572-224.510392.610-156.6682401.234-283.682495.838-197.8061484.797-342.755599.165-239.0436.柱端剪力计算表2-42柱端剪力汇总表(kN)层次A柱B柱C柱D柱61.2181.8551.8551.21852.6354.0164.0162.63544.0526.1766.1764.05235.3018.0788.0785.30126.5509.9819.9816.55019.04811.24111.2419.048图2-20风荷载作用下框架的弯矩图(kN.m)图2-21风荷载作用下框架的剪力图(kN)图2-22风荷载作用下柱轴力图(kN)1.5横向水平地震作用下内力计算取一榀横向中框架计算,和风载计算相同各柱的分配剪力、柱端弯矩等。各柱反弯点高度比y按式y=y0+y1+y2+y3确定。1.柱端弯矩计算以第六层为例第六层A柱:Vij=107.712×21206.213/126334.1=17.761kNyh=1.411(1-y)h=2.455MBMB第六层B柱:MCMC表2-43柱端弯矩汇总表(kN·m)层次A柱上A柱下B柱上B柱下C柱上C柱下D柱上D柱下6483.943254.901618.537506.075618.537506.075483.943254.9015744.051608.7691030.8171030.8171030.8171030.817744.051608.76941027.532840.7081423.5531423.5531423.5531423.5531027.532840.70831133.0531133.0531726.7191726.7191726.7191726.7191133.0531133.05321273.2121273.2121940.3121940.3121940.3121940.3121273.2121273.21211502.6982730.2542366.5022892.3912366.5022892.3911502.6982730.2542.梁端弯矩计算以第六层B节点为例kN·mMb表2-44梁端弯矩汇总表(kN·m)层次A柱右B柱左B柱右C柱左C柱右D柱左6483.943167.691450.846450.8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论