淮北理工学院《快速表达设计》2023-2024学年第一学期期末试卷_第1页
淮北理工学院《快速表达设计》2023-2024学年第一学期期末试卷_第2页
淮北理工学院《快速表达设计》2023-2024学年第一学期期末试卷_第3页
淮北理工学院《快速表达设计》2023-2024学年第一学期期末试卷_第4页
淮北理工学院《快速表达设计》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页淮北理工学院《快速表达设计》

2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉在自动驾驶领域有重要应用。假设车辆需要根据摄像头采集的图像来识别道路上的交通标志,并且要在不同天气和光照条件下都能准确识别。以下哪种方法可能有助于提高交通标志识别的鲁棒性?()A.使用多个不同类型的摄像头获取图像B.仅依赖颜色特征进行识别C.采用简单的线性分类器进行标志分类D.减少训练数据中的交通标志种类2、在计算机视觉中,图像生成是创建新的图像内容。以下关于图像生成的说法,错误的是()A.可以通过生成对抗网络(GAN)、变分自编码器(VAE)等模型进行图像生成B.图像生成可以用于艺术创作、数据增强和虚拟场景构建等任务C.生成的图像质量和真实性在不断提高,但仍然存在一些缺陷和不完美之处D.图像生成可以完全根据用户的任意想象生成任何内容,不受任何限制3、计算机视觉中的语义理解旨在理解图像或视频中的高层语义信息。以下关于语义理解的说法,不正确的是()A.语义理解需要将图像中的物体、场景和事件等与先验知识进行关联和解释B.知识图谱可以为语义理解提供丰富的语义信息和关系C.语义理解在图像描述生成、问答系统等任务中发挥着重要作用D.语义理解已经达到了非常完美的程度,能够准确理解任何复杂的图像或视频内容4、在计算机视觉的目标识别任务中,假设要识别不同种类的水果。以下关于应对类内差异和类间相似性的策略,哪一项是不正确的?()A.增加训练数据的多样性,包括不同角度、大小和成熟度的水果B.提取更具区分性的特征,减少类内差异和类间相似性的影响C.降低模型的复杂度,避免过度拟合类内差异和类间相似性D.忽略类内差异和类间相似性,依靠模型的自动适应能力5、计算机视觉在医学图像分析中有着重要作用。假设要通过眼底图像检测糖尿病性视网膜病变,以下关于模型训练中数据标注的难度,哪一项是最为显著的?()A.病变区域的边界模糊,难以精确标注B.眼底图像的质量参差不齐,影响标注准确性C.标注人员的医学知识不足,导致标注错误D.数据量过大,标注工作耗时费力6、计算机视觉中的虚拟现实(VR)和增强现实(AR)应用需要实时生成逼真的视觉效果。假设要在一个VR游戏中为玩家提供沉浸式的视觉体验,或者在AR应用中准确地将虚拟物体与现实场景融合。以下哪种计算机视觉技术在实现这些效果时至关重要?()A.实时渲染技术B.空间定位与追踪技术C.三维重建与建模技术D.以上技术综合应用7、在计算机视觉的人脸识别任务中,假设要实现一个能够在不同光照和表情下准确识别的系统。以下关于数据预处理的步骤,哪一项是最重要的?()A.对人脸图像进行归一化处理,统一大小和亮度B.对图像进行锐化处理,增强面部特征C.给图像添加艺术效果,提高美观度D.随机裁剪图像,增加数据多样性8、在计算机视觉中,三维重建是从二维图像恢复物体的三维结构。以下关于三维重建的叙述,不正确的是()A.可以通过多视图几何、结构光或深度学习方法进行三维重建B.三维重建在虚拟现实、文物保护和工业设计等领域有着广泛的应用C.三维重建的结果总是精确无误的,能够完全还原物体的真实三维结构D.噪声、遮挡和图像质量等因素会对三维重建的结果产生影响9、图像压缩是为了减少图像的数据量,同时保持可接受的视觉质量。假设我们需要在网络上传输大量的图像,以下哪种图像压缩标准能够在保证较高压缩比的同时,提供较好的图像质量?()A.JPEGB.PNGC.GIFD.BMP10、在计算机视觉的三维重建任务中,假设要从一系列二维图像重建出物体的三维模型。以下关于相机参数校准的重要性,哪一项是不正确的?()A.准确的相机参数有助于提高三维重建的精度B.相机参数校准可以减少重建过程中的误差累积C.即使相机参数不准确,也能通过后续处理得到精确的三维模型D.不同相机的参数差异会影响三维重建的结果11、计算机视觉中的图像风格迁移是一项有趣的任务。假设要将一幅油画的风格应用到一张照片上,以下关于模型训练的要点,哪一项是不正确的?()A.学习油画和照片的特征表示,找到风格和内容的分离方式B.只关注风格的迁移,不考虑照片原始内容的保留C.采用对抗训练,使生成的图像在风格和内容上达到平衡D.调整模型参数,控制风格迁移的强度和效果12、在计算机视觉的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)特征是一种经典的方法。假设我们要对一组包含不同视角和缩放比例的物体图像进行匹配,SIFT特征的哪个特性使其在这种情况下表现出色?()A.对旋转和尺度变化具有不变性B.计算速度快,效率高C.特征维度低,易于存储和处理D.对光照变化不敏感13、当进行视频中的动作识别时,假设要分析一段运动员训练的视频,识别出其中的各种动作,如跑步、跳跃和举重等。视频中的动作可能存在速度变化、遮挡和视角变化等问题。为了准确识别这些动作,以下哪种技术是关键的?()A.对每一帧图像进行独立的动作分类,然后综合结果B.利用光流信息来捕捉视频中的运动模式C.只关注视频中的关键帧,忽略其他帧D.不考虑视频的时序信息,将其视为一系列独立的图像14、在计算机视觉的场景理解任务中,需要对整个图像场景进行分析和解释。假设我们有一张城市街道的图像,要理解其中的道路、建筑物、车辆和行人之间的关系。以下哪种方法能够提供更全面和深入的场景理解?()A.基于对象检测和分类的方法B.基于语义分割和图模型的方法C.基于深度学习的场景解析网络D.基于特征匹配和聚类的方法15、计算机视觉中的动作识别是对视频中人物或物体的动作进行分类和识别。以下关于动作识别的描述,不准确的是()A.动作识别需要分析视频中的时空特征来理解动作的模式和类别B.双流卷积网络在动作识别任务中被广泛应用,分别处理空间和时间信息C.动作识别在体育分析、视频监控和智能安防等领域具有重要的应用价值D.动作识别技术已经非常成熟,能够准确识别各种复杂和细微的动作16、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设要检测生产线上的零件是否存在缺陷,以下关于工业检测中的计算机视觉应用的描述,哪一项是不正确的?()A.可以使用机器视觉系统对零件进行实时检测,快速发现缺陷B.深度学习模型能够自动学习正常零件和缺陷零件的特征差异,实现准确的缺陷检测C.工业检测中的计算机视觉系统需要具备高度的准确性和稳定性,能够适应不同的生产环境D.计算机视觉在工业检测中只能检测外观缺陷,对于零件的内部结构和性能无法进行评估17、在计算机视觉的立体视觉中,需要通过两个或多个相机获取的图像来计算深度信息。假设要为一个自动驾驶汽车构建立体视觉系统,以测量与前方障碍物的距离,同时要考虑实时性和准确性的要求。以下哪种立体匹配算法在这种应用场景中表现最优?()A.基于区域的匹配B.基于特征的匹配C.基于深度学习的匹配D.全局优化匹配18、计算机视觉中的姿态估计是确定物体在三维空间中的位置和方向。假设要估计一个机器人手臂的姿态,以下关于姿态估计方法的描述,哪一项是不正确的?()A.基于视觉的姿态估计可以通过分析物体在图像中的特征点来计算其姿态B.可以结合多个摄像头的图像信息,提高姿态估计的精度和鲁棒性C.姿态估计通常需要先对物体进行建模,然后通过匹配图像和模型来确定姿态D.姿态估计的结果总是非常准确,不受图像噪声、遮挡和物体形状变化的影响19、计算机视觉中的图像去雾是一个具有挑战性的问题。假设要去除一张有浓雾的风景图像中的雾气,以下哪种方法可能需要对大气散射模型有深入的了解?()A.基于深度学习的去雾方法B.基于物理模型的去雾方法C.基于图像增强的去雾方法D.基于滤波的去雾方法20、在计算机视觉的立体视觉任务中,通过两个或多个相机获取的图像来计算深度信息。以下哪种立体匹配算法在精度和效率方面可能表现较好?()A.基于区域的匹配算法B.基于特征的匹配算法C.基于深度学习的匹配算法D.以上都是21、计算机视觉在工业检测中的应用可以提高生产效率和质量。假设要检测生产线上产品的表面缺陷,以下关于工业检测中的计算机视觉技术的描述,正确的是:()A.传统的机器视觉方法在检测复杂的表面缺陷时比深度学习方法更可靠B.深度学习模型需要大量的有缺陷和无缺陷样本进行训练,才能准确检测出各种缺陷C.工业检测中的计算机视觉系统不需要考虑实时性和准确性的平衡D.产品的颜色和材质对表面缺陷检测的结果没有影响22、计算机视觉中的目标重识别任务旨在在不同的摄像头视角中识别出同一目标。假设要在一个大型商场的多个摄像头中寻找一个特定的人物。以下关于目标重识别的描述,哪一项是不准确的?()A.可以通过提取目标的特征,如颜色、形状和纹理,来进行重识别B.深度学习中的特征学习方法能够提高目标重识别的准确率C.目标重识别不受摄像头视角、光照和人物姿态变化的影响D.可以通过建立目标的特征库,快速在多个摄像头中进行匹配和搜索23、在计算机视觉的全景图像拼接任务中,假设要将多张拍摄的局部图像拼接成一幅完整的全景图。以下关于图像匹配和融合的步骤,哪一项是容易出错的?()A.准确找到相邻图像之间的特征点进行匹配B.对匹配后的图像进行几何校正和投影变换C.直接将图像拼接在一起,不进行任何过渡处理D.采用合适的融合算法,消除拼接处的明显痕迹24、计算机视觉在工业检测中的应用越来越广泛。假设要检测电子电路板上的微小缺陷,以下哪种图像采集设备可能提供更高的分辨率和精度?()A.普通数码相机B.工业线阵相机C.手机摄像头D.监控摄像头25、对于图像的语义理解任务,假设要理解一张图像所表达的场景和事件,例如判断一张图像是在举行婚礼还是在举办音乐会。图像中的信息可能比较隐晦和复杂。以下哪种方法可能有助于提高语义理解的准确性?()A.构建图像的语义图,分析物体之间的关系B.只关注图像中的主要物体,忽略背景信息C.对图像进行简单的分类,不进行深入的语义分析D.随机猜测图像的语义26、计算机视觉中,以下哪个任务通常需要对图像中的目标进行定位和分类?()A.图像生成B.目标检测C.图像超分辨率D.图像去噪27、在图像去噪中,BM3D(Block-Matchingand3DFiltering)算法的优势在于()A.去噪效果好B.保持图像细节C.计算效率高D.以上都是28、在计算机视觉的图像检索任务中,假设要从一个大型图像数据库中快速找到与给定查询图像相似的图像。这些图像可能在内容、风格和主题上存在差异。为了提高检索的效率和准确性,以下哪种方法通常被采用?()A.基于全局特征的图像表示和相似性度量B.只对图像的标签进行文本匹配,忽略图像内容C.随机选择数据库中的图像作为检索结果D.不进行任何预处理,直接在原始图像上进行检索29、在计算机视觉的行人检测任务中,假设要在一个拥挤的街道场景中准确检测出行人,场景中存在光照变化、人群遮挡和复杂背景。以下哪种特征表示方法在这种情况下可能更具鲁棒性?()A.基于形状的特征,如行人的轮廓B.基于颜色的特征,如行人衣服的颜色C.基于深度学习的特征,通过卷积神经网络自动学习D.不提取任何特征,直接对原始图像进行检测30、计算机视觉中的图像去噪旨在去除图像中的噪声,恢复清晰的图像。假设要处理一张受到严重噪声污染的天文图像,以下关于去噪算法的选择,哪一项是需要谨慎考虑的?()A.选择基于滤波的去噪算法,如中值滤波B.采用基于深度学习的去噪算法,如自编码器C.只考虑去噪效果,不关心图像细节的保留D.根据噪声的类型和强度选择合适的去噪算法二、应用题(本大题共5个小题,共25分)1、(本题5分)使用计算机视觉方法,检测商场门口的人员聚集情况。2、(本题5分)对舞蹈比赛中的舞蹈音乐选择和与舞蹈动作的配合度进行评估3、(本题5分)通过计算机视觉,对不同类型的麦秆画作品进行分类。4、(本题5分)通过图像分割技术,将医学图像中的血管和神经组织进行分离。5、(本题5分)运用计算机视觉技术,对电力设备的外观进行故障检测。三、简答题(本大题共

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论