![中考数学二轮复习几何专项知识精讲+基础提优训练专题24 正方形存在性问题巩固练习(提优)(原卷版)_第1页](http://file4.renrendoc.com/view12/M06/1E/3B/wKhkGWeOTyuAXAwDAAGevkoYmkg745.jpg)
![中考数学二轮复习几何专项知识精讲+基础提优训练专题24 正方形存在性问题巩固练习(提优)(原卷版)_第2页](http://file4.renrendoc.com/view12/M06/1E/3B/wKhkGWeOTyuAXAwDAAGevkoYmkg7452.jpg)
![中考数学二轮复习几何专项知识精讲+基础提优训练专题24 正方形存在性问题巩固练习(提优)(原卷版)_第3页](http://file4.renrendoc.com/view12/M06/1E/3B/wKhkGWeOTyuAXAwDAAGevkoYmkg7453.jpg)
![中考数学二轮复习几何专项知识精讲+基础提优训练专题24 正方形存在性问题巩固练习(提优)(原卷版)_第4页](http://file4.renrendoc.com/view12/M06/1E/3B/wKhkGWeOTyuAXAwDAAGevkoYmkg7454.jpg)
![中考数学二轮复习几何专项知识精讲+基础提优训练专题24 正方形存在性问题巩固练习(提优)(原卷版)_第5页](http://file4.renrendoc.com/view12/M06/1E/3B/wKhkGWeOTyuAXAwDAAGevkoYmkg7455.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正方形存在问题巩固练习1.已知抛物线y=ax2+bx+5经过点A(1,0),B(5,0)两点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线的解析式;(2)如图1,①当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?②在y轴上确定一点M,使点M到D、B两点的距离之和d=MD+MB最小,求点M的坐标.(3)如图2,若四边形OEBF是以OB为对角线的平行四边形.是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求E点的坐标;若不存在,请说明理由.2.如图1,对称轴为直线x=72的抛物线经过点A(6,0)和(1)求抛物线的解析式及抛物线与x轴的另一交点C的坐标;(2)D为坐标平面上一点,且以A、B、C、D为顶点的四边形是平行四边形,写出点D的坐标;(3)如图2,点E(x,y)是抛物线上位于第四象限的一点,四边形OEAF是以OA为对角线的平行四边形.①当▱OEAF的面积为24时,请判断▱OEAF是矩形吗?是菱形吗?②是否存在点E,使▱OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.3.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.4.如图,P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,AC为⊙O的直径,PO交于⊙O于点E.(1)试判断∠APB与∠BAC的数量关系;(2)若⊙O的半径为4,P是⊙O外一动点,是否存在点P,使四边形PAOB为正方形?若存在,请求出PO的长,并判断点P的个数及其满足的条件;若不存在,请说明理由.5.如图,在平面直角坐标系中,点A是动点且纵坐标为6,点B是线段OA上一动点,过点B作直线MN∥x轴,设MN分别交射线OA与x轴所成的两个角的平分线于点E、F.(1)求证:EB=BF;(2)当OBOA为何值时,四边形AEOF(3)是否存在点A、B,使四边形AEOF为正方形?若存在,求点A与B的坐标;若不存在,说明理由.6.如图,在平面直角坐标系中,函数y=﹣2x+12的图象分别交x轴、y轴于A、B两点,过点A的直线交y正半轴于点M,且点M为线段OB的中点.(1)求直线AM的函数解析式.(2)试在直线AM上找一点P,使得S△ABP=S△AOM,请直接写出点P的坐标.(3)点C在直线AM上,在坐标平面内是否存在点D,使以A、O、C、D为顶点的四边形是正方形?若存在,请直接写出点D的坐标;若不存在,请说明理由.7.如图1,以一块等腰直角三角板的两条直角边为坐标轴建立直角坐标系,OA=OB=3,过点A,B的抛物线对称轴为直线x=1,抛物线与x轴的另一交点为点D.(1)求该抛物线的解析式;(2)如图2,如果将三角板的直角顶点C在x轴上滑动,一直角所在的直线过点B,另一条直角边与抛物线交点为E,其横坐标为4,试求点C的坐标;(3)如图3,点P为抛物线对称轴上一动点,M为抛物线在x轴上方图象上一点,N为平面内一动点,是否存在P、M、N,使得以A、P、M、N为顶点的四边形为正方形?若存在,求出M的坐标;若不存在,说明理由.8.如图,已知在平面直角坐标系中,直角梯形ABCD,AB∥CD,AD=CD,∠ABC=90°,A、B在x轴上,点D在y轴上,若tan∠OAD=43,(1)求直线AC的解析式;(2)若点Q、P分别从点C、A同时出发,点Q沿线段CA向点A运动,点P沿线段AB向点B运动,Q点的速度为每秒5个单位长度,P点的速度为每秒2个单位长度,设运动时间为t秒,△PQE的面积为S,求S与t的函数关系式(请直接写出自变量t的取值范围);(3)在(2)的条件下,过P点作PQ的垂线交直线CD于点M,在P、Q运动的过程中,是否在平面内有一点N,使四边形QPMN为正方形?若存在,求出N点的坐标;若不存在,请说明理由.9.如图,在平面直角坐标系中,A(﹣1,0)、B(0,2)且Rt△AOB≌Rt△CDA,抛物线y=ax2+ax﹣2经过点C.(1)求抛物线的解析式;(2)若点P是x轴上一点,且PC⊥PB,求P点的坐标;(3)在抛物线上是否存在两点E、F,使四边形ABEF是正方形?若存在,求点E、F的坐标;若不存在,请说明理由.10.如图,已知抛物线y=(a+2)x2+4ax+a2﹣1经过坐标原点,交x轴的正半轴于点D.(1)求a的值;(2)设抛物线的顶点为M,利用尺规,在抛物线的对称轴上,作点N,使得△OMN为等腰三角形.若不止一个,则分别记作N1、N2、N3、…;(3)若点P为抛物线对称轴右侧部分上的一点,过点P作PA⊥x轴于点A,PB∥x轴交抛物线左侧部分于点B,过点B作BC⊥x轴于点C,问:是否存在这样的点P,使得矩形PACB恰好为正方形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.11.如图,点B、C分别在x,y轴的正半轴上,OB,OC的长分别为x2﹣8x+12=0的两个根,且OC>OB,将△COB绕点O逆时针旋转90°,点C落在x轴负半轴上的点A处,点B落在y轴正半轴的点D处,连接AC.(1)求过A,B,C三点的抛物线的函数解析式;(2)直接写出tan∠CAD的值;(3)点P从点C以每秒2个单位长度的速度沿CA运动到点A,点Q从点O以每秒1个单位长度的速度沿OC运动到点C,连接PQ.求S△CPQ的最大值,及此时点P的坐标;(4)M是第二象限内一点,在平面内是否存在点N,使得以A,D,M,N为顶点的四边形是正方形?若存在,请直接写出点N的坐标,若不存在,请说明理由.12.矩形AOBC在平面直角坐标系中的位置如图所示,点A在x轴的负半轴上,点B在y轴的正半轴上,连接AB,AD平分∠BAO交y轴于点D,线段OD的长是方程x2﹣2x﹣3=0的一个根,sin∠DAO=5(1)求点C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古镇改造砖运输协议模板
- 服装服饰运输合同
- 农业抗旱物资运输合同
- 学校建筑石材配送协议
- 产业基地自动扶梯装修合同
- 文旅融合发展项目居间协议
- 丹阳六年级下数学试卷
- 桥梁液压爬模专项施工方案
- 铁路接触网拆除施工方案
- 北海中学期末数学试卷
- 北京市丰台区2024-2025学年九年级上学期期末语文试题(含答案)
- 二零二五年度能源行业员工劳动合同标准范本3篇
- 计划供货时间方案
- 2024年石柱土家族自治县中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 西藏事业单位c类历年真题
- 2024人教新目标(Go for it)八年级英语下册【第1-10单元】全册 知识点总结
- 2025中国移动安徽分公司春季社会招聘高频重点提升(共500题)附带答案详解
- 七年级英语下学期开学考试(深圳专用)-2022-2023学年七年级英语下册单元重难点易错题精练(牛津深圳版)
- 杭州市房地产经纪服务合同
- 放射科护理常规
- 新时代中小学教师职业行为十项准则
评论
0/150
提交评论