版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE12017年中考数学备考之黄金考点聚焦考点四十六:图形的相似聚焦考点☆温习理解1、比和比例的有关概念:(1)表示两个比相等的式子叫作比例式,简称比例.(2)第四比例项:若或a:b=c:d,那么d叫作a、b、c的第四比例项.(3)比例中项:若或a:b=b:c,b叫作a,c的比例中项.(4)黄金分割:把一条线段(AB)分割成两条线段,使其中较长线段(AC)是原线段AB与较短线段(BC)的比例线段,就叫作把这条线段黄金分割.即AC2=AB·BC,AC=;一条线段的黄金分割点有两个.2.比例的基本性质及定理(1)(2)(3)3.平行线分线段成比例定理(1)三条平行线截两条直线,所得的对应线段成比例.(2)平行于三角形一边截其他两边(或两边的延长线),所得的对应线段成比例;(3)如果一条直线截三角形的两边(或两边的延长线),所得的对应线段成比例,那么这条直线平行于三角形的第三边;(4)平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例.4.相似三角形.相似三角形的定义:对应角相等、对应边成比例的三角形叫做相似三角形相似比:相似三角形的对应边的比,叫做两个相似三角形的相似比.5.相似三角形的判定(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似;(2)两角对应相等,两三角形相似;(3)两边对应成比例且夹角相等,两三角形相似;(4)三边对应成比例,两三角形相似;(5)两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似;(6)直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.6.相似三角形性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.7.相似多边形的性质(1)相似多边形对应角相等,对应边成比例.(2)相似多边形周长之比等于相似比,面积之比等于相似比的平方.8.位似图形(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.名师点睛☆典例分类考点典例一、比例的基本性质、黄金分割【例1】已知,则的值是()A. B. C. D.【举一反三】若4y-3x=0,则考点典例二、三角形相似的性质及判定【例2】(2016湖南怀化第21题)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.【举一反三】(2016湖北武汉第23题)(本题10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2)若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.考点典例三、相似三角形综合问题【例3】(2016湖北十堰第24题)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.【举一反三】(2016湖北鄂州第22题)(本题满分10分)如图,在Rt△ABC中,∠ACB=90º,AO是△ABC的角平分线。以O为圆心,OC为半径作⊙O。(1)(3分)求证:AB是⊙O的切线。(2)(3分)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值。(3)(4分)在(2)的条件下,设⊙O的半径为3,求AB的长。考点典例四、相似多边形与位似图形【例4】(2016辽宁营口第15题)如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.【举一反三】(2016湖北十堰第5题)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3B.1:4C.1:5D.1:9课时作业☆能力提升1.(2016黑龙江哈尔滨第9题)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.B.C.D.2.(2016山东东营第8题)如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为EQ\F(1,3),把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)3.(2016湖南湘西州第17题)如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE的面积为()A.3B.5C.6D.84.(2016河北第15题)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()第15题图5.(2016新疆生产建设兵团第7题)如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE=BCB.C.△ADE∽△ABCD.S△ADE:S△ABC=1:26.(2016湖北随州第7题)如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:257.(2016湖南湘西州第17题)如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE的面积为()A.3B.5C.6D.88.(2016湖南衡阳第16题)若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.9.(2016辽宁沈阳第16题)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.10.(2016新疆第13题)如图所示,△ABC中,E,F分别是边AB,AC上的点,且满足EQ\F(AE,EB)=EQ\F(AF,FC)=EQ\F(1,2),则△AEF与△ABC的面积比是.11.(2016湖南娄底第14题)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)12.(2016内蒙古巴彦淖尔第7题)如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A.30B.27C.14D.3213.(凉山州)在▱ABCD中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△MOD:S△COB=.14.(辽宁沈阳)如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=.15.(2016福建南平第21题)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.16.(2016福建莆田第25题)若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC中,设BC=a,AC=b,AB=c,各边上的高分别记为,,,各边上的内接正方形的边长分别记为,,.(1)模拟探究:如图,正方形EFGH为△ABC的BC边上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度新能源项目投资合同履行的环保担保协议3篇
- 电气维保知识培训课件
- 船舶安全知识培训课件
- “520”荔枝电商法治讲堂2025年度电商合规指南3篇
- 《疾病与营养的关系》课件
- 2024年防水工程竣工验收合同
- 《白银投资》课件
- 浙江农林大学《现代农业建筑设计》2023-2024学年第一学期期末试卷
- 中南林业科技大学涉外学院《儿童画创作理论与应用》2023-2024学年第一学期期末试卷
- 2025年度公益组织与企业联合慈善捐赠合作框架协议范本3篇
- 2024年03月山东烟台银行招考笔试历年参考题库附带答案详解
- 河道综合治理工程施工组织设计
- 江苏省扬州市2024-2025学年高中学业水平合格性模拟考试英语试题(含答案)
- 广东省广州市番禺区2023-2024学年八年级上学期期末英语试题
- 2024-2025学年上学期广州初中英语九年级期末试卷
- 迪士尼乐园总体规划
- 惠州学院《大学物理》2021-2022学年第一学期期末试卷
- 2024年江苏省苏州市中考数学试卷含答案
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 2024消防安全警示教育(含近期事故案例)
- Starter Section 1 Meeting English 说课稿 -2024-2025学年北师大版(2024)初中英语七年级上册
评论
0/150
提交评论