版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年外研衔接版高一数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共9题,共18分)1、等差数列共有项,其中奇数项之和为偶数项之和为则其中间项为().A.28B.29C.30D.312、已知直线若圆上恰好存在两个点P、Q,他们到直线的距离为1,则称该圆为“完美型”圆。则下列圆中是“完美型”圆的是()A.B.C.D.3、【题文】设全集集合则等于A.B.C.D.4、【题文】若m、n是互不重合的直线,是互不重合的平面;给出下列命题:()
①若
②若
③若m不垂直于内的无数条直线;
④若
其中正确命题的序号是A.①②B.③④C.②③D.②④5、【题文】已知函数是定义在上的奇函数,且满足当时,则使的的值是()A.B.C.D.6、【题文】已知某几何体的三视图如右图所示,其中俯视图是圆,且该几何体的体积为直径为2的球的体积为则()A.B.C.D.7、直线3x+2y+6=0和2x+5y﹣7=0的交点坐标为()A.(﹣4,﹣3)B.(4,3)C.(﹣4,3)D.(3,4)8、若x0是方程的解,则x0属于区间()A.(1)B.()C.()D.(0,)9、已知α是第二限角,则下列结论正确的是()A.sinα•cosα>0B.sinα•tanα<0C.cosα•tanα<0D.以上都有可能评卷人得分二、填空题(共7题,共14分)10、在等差数列{an}中,已知以表示的前项和,则使得达到最大值的是11、=____.12、函数的定义域是____.13、【题文】若a>0,b>0,且=1,则a+2b的最小值为________.14、【题文】设f(x)的定义域为[0,2],则函数f(x2)的定义域是____15、已知函数f(x)的图象与函数y=3x的图象关于直线y=x对称,则f(9)=____.16、函数y=tan(2x﹣)的定义域为____.评卷人得分三、计算题(共7题,共14分)17、已知x+y=x-1+y-1≠0,则xy=____.18、(2011•苍南县校级自主招生)已知二次函数y=ax2+bx+c图象如图所示;则下列式子:
ab,ac,a+b+c,a-b+c,2a+b,2a-b中,其值为正的式子共有____个.19、(2009•庐阳区校级自主招生)如图所示的方格纸中,有△ABC和半径为2的⊙P,点A、B、C、P均在格点上(每个小方格的顶点叫格点).每个小方格都是边长为1的正方形,将△ABC沿水平方向向左平移____单位时,⊙P与直线AC相切.20、如图,已知AC=AD=AE=BD=DE,∠ADB=42°,∠BDC=28°,则∠BEC=____.21、AB是⊙O的直径,BC切⊙O于B,AC交⊙O于D,且AD=DC,那么sin∠ACO=____.22、某校一间宿舍里住有若干位学生,其中一人担任舍长.元旦时,该宿舍里的每位学生互赠一张贺卡,并且每人又赠给宿舍楼的每位管理员一张贺卡,每位宿舍管理员也回赠舍长一张贺卡,这样共用去了51张贺卡.问这间宿舍里住有多少位学生.23、设集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.若A∩B={2},求实数a的值.评卷人得分四、证明题(共4题,共36分)24、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.25、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.26、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.27、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.评卷人得分五、作图题(共2题,共16分)28、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.29、绘制以下算法对应的程序框图:
第一步;输入变量x;
第二步,根据函数f(x)=
对变量y赋值;使y=f(x);
第三步,输出变量y的值.评卷人得分六、综合题(共4题,共40分)30、如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(4;0);与y轴正半轴交于点E(0,4),边长为4的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;
(1)求拋物线的函数表达式;
(2)如图2;若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线与边AB交于点P且同时与边CD交于点Q.设点A的坐标为(m,n)
①当PO=PF时;分别求出点P和点Q的坐标及PF所在直线l的函数解析式;
②当n=2时;若P为AB边中点,请求出m的值;
(3)若点B在第(2)①中的PF所在直线l上运动;且正方形ABCD与抛物线有两个交点,请直接写出m的取值范围.
31、如图,△ABC中,AB=5,BC=6,BD=BC;AD⊥BC于D,E为AB延长线上的一点,且EC交AD的延长线于F.
(1)设BE为x;DF为y,试用x的式子表示y.
(2)当∠ACE=90°时,求此时x的值.32、已知函数f(x)=ax2+4x+b,其中a<0,a、b是实数,设关于x的方程f(x)=0的两根为x1,x2;f(x)=x的两实根为α;β.
(1)若|α-β|=1,求a、b满足的关系式;
(2)若a、b均为负整数;且|α-β|=1,求f(x)解析式;
(3)试比较(x1+1)(x2+1)与7的大小.33、如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置开始,按逆时针方向旋转(∠MPN保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=;OP=2.
(1)当∠MPN旋转30°(即∠OPM=30°)时;求点N移动的距离;
(2)求证:△OPN∽△PMN;
(3)写出y与x之间的关系式;
(4)试写出S随x变化的函数关系式,并确定S的取值范围.参考答案一、选择题(共9题,共18分)1、B【分析】∴中间项为=29,故选B项【解析】【答案】B2、D【分析】【解析】
因为直线若圆上恰好存在两个点P、Q,他们到直线的距离为1,则称该圆为“完美型”圆。则下列圆中是“完美型”圆的是满足圆心到直线的距离为即可知选选D【解析】【答案】D3、B【分析】【解析】
试题分析:因为全集集合
所以所以=选B.
考点:集合的运算【解析】【答案】B4、D【分析】【解析】①错误;直线n与平面的位置关系不确定。②正确;
③错误。m可以垂直于平面内的一组平行线;④正确。由线面平行的判定定理可知。
故选D【解析】【答案】D5、D【分析】【解析】因为所以则是周期为4的周期函数。依题意可得,当时,令解得符合。而当时,解得不符合。当时,则令解得不符合。当时,则令解得符合。综上可得,当时,的解为因为是周期为4的周期函数,所以的解集为故选D【解析】【答案】D6、B【分析】【解析】
试题分析:由三视图知:几何体是圆柱挖去一个同底等高的圆锥;
圆柱与圆锥的底面半径为1;高都为1;
∴几何体的体积V1=π×12×1-×π×12×1=
直径为2的球的体积V2=π×13=∴V1:V2=1:2.故选:B.
考点:三视图求几何体的体积,球的体积公式.【解析】【答案】B7、C【分析】【解答】解:由题意得:
解得:
故选:C.
【分析】直接联立两直线方程组成的方程组求解两直线的交点坐标.8、C【分析】【解答】解:∵
∴x0属于区间().
故选C.
【分析】由题意x0是方程的解,根据指数函数和幂数函数的增减性进行做题.9、B【分析】解:因为α是第二限角;
所以sinα>0;cosα<0,tanα<0;
所以sinα•tanα<0.
故选B.
直接利用角的象限;判断正弦函数与余弦函数;正切函数的值的符号,然后判断选项.
本题考查角的象限与三角函数值的符号的判断,考查计算能力.【解析】【答案】B二、填空题(共7题,共14分)10、略
【分析】试题分析:由于当n=10是最大.考点:等差数列的前n项和.【解析】【答案】1011、略
【分析】
∵=
∴=-n=0
故答案为:0
【解析】【答案】由平均数的性质,可得=而=-n代入可得答案.
12、略
【分析】由得,所以定义域为【解析】【答案】13、略
【分析】【解析】2a+4b+3=(2a+4b+3)·=[(2a+b)+3(b+1)]·=1+++3≥4+2所以a+2b≥【解析】【答案】14、略
【分析】【解析】略【解析】【答案】15、2【分析】【解答】解:法一:∵函数y=f(x)的图象与函数y=3x的图象关于直线y=x对称;
∴函数y=f(x)与函数y=3x互为反函数;
又∵函数y=3x的反函数为:
y=log3x;
即f(x)=log3x;
∴f(9)=log39=2;
故答案为:2.
法二:假设f(9)=t;则函数f(x)的图象过点(9,t)
则点(9,t)关于直线y=x对称的点(t,9)在函数y=3x的图象上。
即9=3t;解得t=2
故答案为:2.
【分析】法一:根据两个函数的图象关于直线y=x对称可知这两个函数互为反函数;故只要利用求反函数的方法求出原函数的反函数,然后将9代入函数的解析式即可.
法二:假设f(9)=t,则函数f(x)的图象过点(9,t),则点(9,t)关于直线y=x对称的点(t,9)在函数y=3x的图象上,代入解析式可求出t的值.16、【分析】【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+k∈Z
解得:
故函数的定义域为
故答案为
【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值范围,即可得到函数的定义域.三、计算题(共7题,共14分)17、略
【分析】【分析】先把原式化为x+y=+=的形式,再根据等式的性质求出xy的值即可.【解析】【解答】解:∵x+y=x-1+y-1≠0;
∴x+y=+=;
∴xy=1.
故答案为:1.18、略
【分析】【分析】由函数图象可以得到a<0,b>0,c<0,令y=0,方程有两正实根,根据以上信息,判断六个代数式的正负.【解析】【解答】解:从函数图象上可以看到,a<0,b>0;c<0,令y=0,方程有两正实根;
则①ab<0;
②ac>0;
③当x=1时,a+b+c>0;
④当x=-1时,a-b+c<0;
⑤对称轴x=-=1,2a+b=0;
⑥对称轴x=-=1,b>0,2a-b<0.
故答案为2.19、略
【分析】【分析】平移后利用切线的性质作PD⊥A′C′于点D求得PD,再求得PA′的长,进而得出PA-PA′和AA″的长,即可求得平移的距离.【解析】【解答】解:∵A′C′与⊙P相切;
作PD⊥A′C′于点D;
∵半径为2;
∴PD=2;
∵每个小方格都是边长为1的正方形;
∴AB=5,AC=2;
∴cosA==;
∴PA′=PD÷cosA=2÷=;
∴AA′=5-,AA″=5+;
故答案为5-或5+.20、略
【分析】【分析】根据等腰三角形的性质和等边三角形的性质分别得出∠AEC,∠BED,∠AED的度数,由∠BEC=∠AEC+∠BED-∠AED即可求解.【解析】【解答】解:∠ADC=42°+28°=70°.∠CAD=180°-2×70°=40°;
∠DAE=∠ADE=∠AED=∠60°;
于是;在△ACE中,∠CAE=60°+40°=100°;
∠AEC=(180°-100°)÷2=40°.
又∵在△BDE中;∠BDE=60°+42°=102°;
∴∠BED=(180-102)÷2=39°
从而∠BEC=∠AEC+∠BED-∠AED=40°+39°-60°=19°.
故答案为19°.21、略
【分析】【分析】连接BD,作OE⊥AD.在Rt△OEC中运用三角函数的定义求解.【解析】【解答】解:连接BD;作OE⊥AD.
AB是直径;则BD⊥AC.
∵AD=CD;
∴△BCD≌△BDA;BC=AB.
BC是切线;点B是切点;
∴∠ABC=90°,即△ABC是等腰直角三角形,∠A=45°,OE=AO.
由勾股定理得,CO=OB=AO;
所以sin∠ACO==.
故答案为.22、略
【分析】【分析】设有x个学生;y个管理员.
①该宿舍每位学生与赠一张贺卡;那么每个人收到的贺卡就是x-1张,那么总共就用去了x(x-1)(乘法原理)张贺卡;
②每个人又赠给每一位管理员一张贺卡;那么就用去了xy(乘法原理)张贺卡;
③每位管理员也回赠舍长一张贺卡;那么就用去了y张贺卡;
所以根据题意列出方程:x(x-1)+xy+y=51(加法原理),然后根据生活实际情况解方程即可.【解析】【解答】解:设有x个学生;y个管理员.
该宿舍每位学生与赠一张贺卡;那么每个人收到的贺卡就是x-1张,那么总共就用去了x(x-1)张贺卡;
每个人又赠给每一位管理员一张贺卡;那么就用去了xy张贺卡;
每位管理员也回赠舍长一张贺卡;那么就用去了y张贺卡;
∴x(x-1)+xy+y=51;
∴51=x(x-1)+xy+y=x(x-1)+y(x+1)≥x(x-1)+x+1=x2+1(当y=1时取“=”);
解得;x≤7;
x(x-1)+(x+1)y=51
∵51是奇数;而x和x-1中,有一个是偶数;
∴x(x-1)是偶数;
∴(x+1)y是奇数;
∴x是偶数;
而x≤7;所以x只有246三种情况;
当x=2时,y=(不是整数;舍去);
当x=4时,y=(不是整数;舍去);
当x=6时;y=3.
所以这个宿舍有6个学生.23、解:由x2﹣3x+2=0,得x=1或x=2;
故集合A={1;2}.
∵A∩B={2},∴2∈B,代入B中的方程,得a2+4a+3=0⇒a=﹣1或a=﹣3;
当a=﹣1时,B={x|x2﹣4=0}={﹣2;2},满足条件;
当a=﹣3时,B={x|x2﹣4x+4=0}={2};满足条件;
综上;知a的值为﹣1或﹣3.
【分析】【分析】先化简集合A,再由A∩B={2}知2∈B,将2代入x2+2(a+1)x+(a2﹣5)=0解决.四、证明题(共4题,共36分)24、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.25、略
【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;
则AC=AE;AB=5DE;
又∵G是AB的中点;
∴AG=ED.
∴ED2=AF•AE;
∴5ED2=AF•AE;
∴AB•ED=AF•AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.26、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.27、略
【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四边形GBFC是平行四边形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵过A;G的圆与BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四点共圆;
∴GA;GF=GC•GD;
即GA2=GC•GD.五、作图题(共2题,共16分)28、略
【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.
∵点A与点A′关于CD对称;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:铺设管道的最省费用为10000元.29、解:程序框图如下:
【分析】【分析】该函数是分段函数,当x取不同范围内的值时,函数解析式不同,因此当给出一个自变量x的值时,必须先判断x的范围,然后确定利用哪一段的解析式求函数值,因为函数解析式分了三段,所以判断框需要两个,即进行两次判断,于是,即可画出相应的程序框图.六、综合题(共4题,共40分)30、略
【分析】【分析】(1)已知抛物线的对称轴是y轴;顶点是(0,4),经过点(4,0),利用待定系数法即可求得函数的解析式;
(2)①过点P作PG⊥x轴于点G;根据三线合一定理可以求得G的坐标,则P点的横坐标可以求得,把P的横坐标代入抛物线的解析式,即可求得纵坐标,得到P的坐标,再根据正方形的边长是4,即可求得Q的纵坐标,代入抛物线的解析式即可求得Q的坐标,然后利用待定系数法即可求得直线PF的解析式;
②已知n=2;即A的纵坐标是2,则P的纵坐标一定是2,把y=2代入抛物线的解析式即可求得P的横坐标,根据AP=2,且AP∥y轴,即可得到A的横坐标,从而求得m的值;
(3)假设B在M点时,C在抛物线上或假设当B点在N点时,D点同时在抛物线上时,求得两个临界点,当B在MP和FN之间移动时,抛物线与正方形有两个交点.【解析】【解答】解:(1)由抛物线y=ax2+c经过点E(0;4),F(4,0)
,解得;
∴y=-x2+4;
(2)①过点P作PG⊥x轴于点G;
∵PO=PF∴OG=FG
∵F(4;0)∴OF=4
∴OG=OF=×4=2;即点P的横坐标为2
∵点P在抛物线上。
∴y=-×22+4=3;即P点的纵坐标为3
∴P(2;3)
∵点P的纵坐标为3;正方形ABCD边长是4,∴点Q的纵坐标为-1
∵点Q在抛物线上,∴-1=-x2+4
∴x1=2,x2=-2(不符题意;舍去)
∴Q(2;-1)
设直线PF的解析式是y=kx+b;
根据题意得:;
解得:,
则直线的解析式是:y=-x+6;
②当n=2时;则点P的纵坐标为2
∵P在抛物线上,∴2=-x2+4
∴x1=2,x2=-2
∴P的坐标为(2,2)或(-2;2)
∵P为AB中点∴AP=2
∴A的坐标为(2-2,2)或(-2-2;2)
∴m的值为2-2或-2-2;
(3)假设B在M点时;C在抛物线上,A的横坐标是m,则B的横坐标是m+4;
代入直线PF的解析式得:y=-(m+4)+6=-m;
则B的纵坐标是-m,则C的坐标是(m+4,-m-4).
把C的坐标代入抛物线的解析式得:-m-4=-(m+4)2+4,解得:m=-1-或-1+(舍去);
当B在E点时;AB经过抛物线的顶点,则E的纵坐标是4;
把y=4代入y=-x+6,得4=-x+6,解得:x=;
此时A的坐标是(-,4),E的坐标是:(;4),此时正方形与抛物线有3个交点.
当点B在E点时,正方形与抛物线有两个交点,此时-1-<m<-;
当点B在E和P点之间时,正方形与抛物线有三个交点,此时:-<x<-2;
当B在P点时;有两个交点;
假设当B点在N点时;D点同时在抛物线上时;
同理,C的坐标是(m+4,-m-4),则D点的坐标是:(m,-m-4);
把D的坐标代入抛物线的解析式得:-m-4=-m2+4,解得:m=3+或3-(舍去);
当B在F与N之间时,抛物线与正方形有两个交点.此时0<m<3+.
故m的范围是:-1-<m-或m=2或0<m<3+.31、略
【分析】【分析】(1)过B作BG∥AF交BCEC于G,则可以得到△CDF∽△CBG,接着利用相似三角形的性质得到,在Rt△ABD中,利用勾股定理可得;又△EGB∽△EFA,由此利用相似三角形的性质即可求出y与x的函数关系;
(2)当∠ACE=90°时,则有∠FCD=∠DAC,由此得到Rt△ADC∽Rt△CDF,接着利用相似三角形的性质得到CD2=AD•DF,所以16=,从而得到,代入,即可求出x.【解析】【解答】解:(1)过B作BG∥AF交EC于G,
则△CDF∽△CBG;
∴;
∴;
在Rt△ABD中,可得;
又∵△EGB∽△EFA;
∴;
∴;
(2)当∠ACE=90°时;则有∠FCD=∠DAC;
∴Rt△ADC∽Rt△CDF;
∴;
∴CD2=AD•DF;
∴16=;
∴;
代入,有;
解得.32、略
【分析】【分析】(1)根据f(x)=x的两实根为α、β,可列出方程用a,b表示两根α,β,根据|α-β|=1,可求出a、b满足的关系式.
(2)根据(1)求出的结果和a、b均为负整数,且|α-β|=1,可求出a,b;从而求出f(x)解析式.
(3)因为关于x的方程f(x)=0的两根为x1,x2,用a和b表示出(x1+1)(x2+1),讨论a,b的关系可比较(x1+1)(x2+1)与7的大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课程设计科学有
- 二零二五年度小型餐馆污水处理合同2篇
- 脱壳机课程设计
- 2025年度暖气片节能产品认证合同样本3篇
- 2025年度特许经营合同标的及许可条件详细说明3篇
- 技术部门安全职责(2篇)
- 2025年生产企业安全库存管理制度(三篇)
- 2025年度特色农产品线上线下融合营销合作协议2篇
- 二零二五年度房地产记账代理与评估合同3篇
- 二零二五年度文化旅游项目勘察设计服务协议3篇
- 工程设计-《工程勘察设计收费标准》(2002年修订本)-完整版
- DB11-T1835-2021 给水排水管道工程施工技术规程高清最新版
- 解剖篇2-1内脏系统消化呼吸生理学
- 《小学生错别字原因及对策研究(论文)》
- 公司组织架构图(可编辑模版)
- 北师大版七年级数学上册教案(全册完整版)教学设计含教学反思
- 智慧水库平台建设方案
- 系统性红斑狼疮-第九版内科学
- 全统定额工程量计算规则1994
- 粮食平房仓设计规范
- 通用个人全年工资表模板
评论
0/150
提交评论