版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教A版高二数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、双曲线方程为x-2y=1.则它的右焦点坐标是()A.(0)B.(0)C.(0)D.(0)2、统计中有一个非常有用的统计量用它的大小可以确定在多大程度上可以认为“两个分类变量有关系”,下表是反映甲、乙两个平行班(甲班A老师教,乙班B老师教)进行某学科测试,按学生考试及格与不及格统计成绩后的2×2列联表.。不及格及格总计甲班(A教)43640乙班(B教)162440总计206080经计算=9.6,你认为不及格人数的多少与不同老师执教有关系的把握大约为()下面的临界值表供参考:。0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A.99.5%B.99.9%C.95%D.无充分依据.3、【题文】在数列中,已知记为数列的前项和,则()A.B.C.D.4、【题文】设O是正△ABC的中心,则向量是()A.相等向量B.模相等的向量C.共线向量D.共起点的向量5、已知数列的前n项和则的值为()A.80B.40C.20D.106、C61+C62+C63+C64+C65
的值为(
)
A.61
B.62
C.63
D.64
评卷人得分二、填空题(共5题,共10分)7、已知是某产品的总成本(万元)与产量(台)之间的函数关系式,若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是.8、【题文】若则____.9、【题文】设满足约束条件若目标函数()的最大值为则的值为____.10、【题文】可行域D:与可行域E:对应的点集间的关系是___________.11、如图,直线l是曲线y=f(x)在点(4,f(4))处的切线,则f(4)+f'(4)的值等于______.评卷人得分三、作图题(共6题,共12分)12、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
13、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)14、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
15、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)16、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)17、分别画一个三棱锥和一个四棱台.评卷人得分四、解答题(共3题,共30分)18、【题文】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)当x∈时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.19、【题文】已知函数.
(1)若求的值;
(2)设三内角所对边分别为且求在上的值域.20、【题文】2、在中,求的内切圆半径.评卷人得分五、计算题(共2题,共20分)21、如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.22、已知f(x)=∫1x(4t3﹣)dt,求f(1﹣i)•f(i).评卷人得分六、综合题(共4题,共32分)23、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过AB,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心;以AD为半径作⊙A.
①证明:当AD+CD最小时;直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:____.24、(2009•新洲区校级模拟)如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.则AF•BE=____.25、(2015·安徽)设椭圆E的方程为+=1(ab0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足=2直线OM的斜率为26、已知f(x)=﹣3x2+a(6﹣a)x+6.参考答案一、选择题(共6题,共12分)1、C【分析】【解析】试题分析:根据双曲线的方程可知,双曲线方程为x-2y=1.焦点在x轴上,且那么可知因此可知右焦点坐标为(0),选C.考点:双曲线的基本性质【解析】【答案】C2、A【分析】因为=9.6大于7.879,所以选A.【解析】【答案】A3、C【分析】【解析】
试题分析:由所以如此继续可得数列是一个以为周期的周期数列,而因此
故选C.
考点:数列的周期性【解析】【答案】C4、B【分析】【解析】
试题分析:因为,正三角形的中心到三角形顶点距离相等,所以,向量是模相等的向量;选B。
考点:正三角形的性质;向量的概念。
点评:简单题,涉及三角形中点问题,要注意借助于图形的几何特征。【解析】【答案】B5、C【分析】【解答】由数列前项和的定义有所以正确答案选C.6、B【分析】解:C61+C62+C63+C64+C65=(1+1)6鈭�2=62
.
故选B.
利用二项式定理即可得出.
熟练掌握二项式定理是解题的关键.【解析】B
二、填空题(共5题,共10分)7、略
【分析】【解析】【答案】1508、略
【分析】【解析】
试题分析:由得故
考点:1、诱导公式;2、同角三角函数基本关系式.【解析】【答案】9、略
【分析】【解析】
试题分析:根据题意,由于满足约束条件那么可知目标函数()过点(2,3)点时;则目标函数取得最大值35,故可知2m+3=35,故可知m=16,
考点:线性规划的最优解。
点评:主要是考查了线性规划的最优解的运用,属于基础题。【解析】【答案】10、略
【分析】【解析】分别作出可行域D和E,其中两直线x-y+1=0与x+y-4=0的交点坐标为(),如右图所示,可知区域D的点全部落在区域E内,且E中有更多的点,故DE.【解析】【答案】DE
11、略
【分析】解:根据题意;由函数的图象可得f(4)=5;
直线l过点(0,3)和(4,5),则直线l的斜率k==
又由直线l是曲线y=f(x)在点(4,f(4))处的切线,则f′(4)=
则有f(4)+f'(4)=5+=
故答案为:.
根据题意;结合函数的图象可得f(4)=5,以及直线l过点(0,3)和(4,5),由直线的斜率公式可得直线l的斜率k,进而由导数的几何意义可得f′(4)的值,将求得的f(4)与f′(4)的值相加即可得答案.
本题考查导数的几何意义,关键是理解导数的集合意义并计算出直线l的斜率.【解析】三、作图题(共6题,共12分)12、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
13、略
【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.
证明:∵A与A'关于OM对称;A与A″关于ON对称;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根据两点之间线段最短,A'A''为△ABC的最小值.14、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
15、略
【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.
证明:∵A与A'关于OM对称;A与A″关于ON对称;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根据两点之间线段最短,A'A''为△ABC的最小值.16、略
【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;
这样PA+PB最小;
理由是两点之间,线段最短.17、解:画三棱锥可分三步完成。
第一步:画底面﹣﹣画一个三角形;
第二步:确定顶点﹣﹣在底面外任一点;
第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.
画四棱可分三步完成。
第一步:画一个四棱锥;
第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;
第三步:将多余线段擦去.
【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、解答题(共3题,共30分)18、略
【分析】【解析】(1)由图象知A=2,T=8=∴ω=得f(x)=2sin
由×1+φ=2kπ+⇒φ=2kπ+又|φ|<∴φ=∴f(x)=2sin
(2)y=2sin+2sin=2sin+2cos
=2sin=2cosx,∵x∈∴x∈
∴当x=-即x=-时,y的最大值为
当x=-π,即x=-4时,y的最小值为-2【解析】【答案】(1)f(x)=2sin(2)x=-时,最大值为x=-4时,小值为-219、略
【分析】【解析】本试题主要是考查了三角函数中的化简以及求值问题的运用;以及结合三角形中的余弦定理,求解函数的值域。
解:(1)由得.
∴.∴
即
∴.
(2)由即得
则即
又=
由则故即值域是【解析】【答案】(1)(2)[5,6].20、略
【分析】【解析】由解得由解得∴.
∵∴.【解析】【答案】五、计算题(共2题,共20分)21、略
【分析】【分析】作点B关于AC的对称点E,连接EP、EB、EM、EC,则PB+PM=PE+PM,因此EM的长就是PB+PM的最小值.【解析】【解答】解:如图;作点B关于AC的对称点E,连接EP;EB、EM、EC;
则PB+PM=PE+PM;
因此EM的长就是PB+PM的最小值.
从点M作MF⊥BE;垂足为F;
因为BC=2;
所以BM=1,BE=2=2.
因为∠MBF=30°;
所以MF=BM=,BF==,ME==.
所以PB+PM的最小值是.22、解:f(x)=(t4+)|1x=x4+﹣2f(1﹣i)=(1﹣i)4+﹣2=+
f(i)=i4+﹣2=﹣1﹣i
f(1﹣i)f(i)=6+5i【分析】【分析】先根据定积分求出函数f(x)的解析式,然后分别求出f(1﹣i)与f(i)即可求出所求.六、综合题(共4题,共32分)23、略
【分析】【分析】(1)由待定系数法可求得抛物线的解析式.
(2)连接BC;交直线l于点D,根据抛物线对称轴的性质,点B与点A关于直线l对称,∴AD=BD.
∴AD+CD=BD+CD;由“两点之间,线段最短”的原理可知:D在直线BC上AD+CD最短,所以D是直线l与直线BC的交点;
设出直线BC的解析式为y=kx+b;可用待定系数法求得BC直线的解析式,故可求得BC与直线l的交点D的坐标.
(3)由(2)可知,当AD+CD最短时,D在直线BC上,由于已知A,B,C,D四点坐标,根据线段之间的长度,可以求出△ABD是直角三角形,即BC与圆相切.由于AB⊥l,故由垂径定理知及切线长定理知,另一点D与现在的点D关于x轴对称,所以另一点D的坐标为(1,-2).【解析】【解答】解:
(1)设抛物线的解析式为y=a(x+1)(x-3).(1分)
将(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴抛物线的解析式为y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)连接BC;交直线l于点D.
∵点B与点A关于直线l对称;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“两点之间;线段最短”的原理可知:
此时AD+CD最小;点D的位置即为所求.(5分)
设直线BC的解析式为y=kx+b;
由直线BC过点(3;0),(0,3);
得
解这个方程组,得
∴直线BC的解析式为y=-x+3.(6分)
由(1)知:对称轴l为;即x=1.
将x=1代入y=-x+3;得y=-1+3=2.
∴点D的坐标为(1;2).(7分)
说明:用相似三角形或三角函数求点D的坐标也可;答案正确给(2分).
(3)①连接AD.设直线l与x轴的交点记为点E.
由(2)知:当AD+CD最小时;点D的坐标为(1,2).
∴DE=AE=BE=2.
∴∠DAB=∠DBA=45度.(8分)
∴∠ADB=90度.
∴AD⊥BD.
∴BD与⊙A相切.(9分)
②∵另一点D与D(1;2)关于x轴对称;
∴D(1,-2).(11分)24、略
【分析】【分析】根据OA=OB,得到△AOB是等腰直角三角形,则△NBF也是等腰直角三角形,由于P的纵坐标是b,因而F点的纵坐标是b,即FM=b,则得到AF=b,同理BE=a,根据(a,b)是函数y=的图象上的点,因而b=,ab=,则即可求出AF•BE.【解析】【解答】解:∵P的坐标为(a,);且PN⊥OB,PM⊥OA;
∴N的坐标为(0,);M点的坐标为(a,0);
∴BN=1-;
在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);
∴NF=BN=1-;
∴F点的坐标为(1-,);
∵OM=a;
∴AM=1-a;
∴EM=AM=1-a;
∴E点的坐标为(a;1-a);
∴AF2=(-)2+()2=,BE2=(a)2+(-a)2=2a2;
∴AF•BE=1.
故答案为:1.25、(1){#mathml#}255
{#/mathml#};(2){#mathml#}x245+y29=1
{#/mathml#}【分析】【解答】1、由题设条件知,点M的坐标为(),又Kom=从而=进而得a=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度工地施工人员住宿及餐饮服务合同3篇
- 二零二五年度教育培训机构与讲师关于课程教授的合同3篇
- 《联合国国际货物销售合同公约》29条解读
- 2020年出租房屋合同样板
- 《合同补正情况说明》
- 二零二五年度新能源设备动产质押租赁合同范本3篇
- 2025小区简单租房合同范本
- 2025版页岩砖建筑节能项目合作采购合同3篇
- 二零二五年度新能源项目投资货款担保合同范本正规范本2篇
- 二零二五年度新型企业短期借款合同延期及续贷协议模板3篇
- 房地产销售岗位招聘笔试题及解答(某大型国企)2024年
- 中标结果质疑函
- 新能源发电技术 课件 第1章 绪论
- 黔东南南苗族侗族自治州黄平县2024年数学三年级第一学期期末考试试题含解析
- 重症医学质量控制中心督查评价标准及评分细则(2020版)
- 中建医疗工程交付指南
- 2024年甘肃省职业院校技能大赛养老照护(中职学生组)赛项样题1
- 圆圈正义读书分享课件
- 人教版数学二年级下册全册核心素养目标教学设计
- 人教版PEP小学英语三年级下册单词表(带音标)
- 康美药业财务分析案例
评论
0/150
提交评论