福建省南平市管厝中学高二数学理月考试卷含解析_第1页
福建省南平市管厝中学高二数学理月考试卷含解析_第2页
福建省南平市管厝中学高二数学理月考试卷含解析_第3页
福建省南平市管厝中学高二数学理月考试卷含解析_第4页
福建省南平市管厝中学高二数学理月考试卷含解析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省南平市管厝中学高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.抛物线x2=8y的焦点坐标为()A.(2,0) B.(4,0) C.(0,2) D.(0,4)参考答案:C【考点】抛物线的简单性质.【分析】根据抛物线的标准方程的形式,求出焦参数p值,即可得到该抛物线的焦点坐标.【解答】解:由题意,抛物线的顶点在原点,焦点在y轴上∵抛物线x2=8y中,2p=8,得=2∴抛物线的焦点坐标为F(0,2)故选:C2.点P的直角坐标为,则点P的极坐标为(

)A. B. C. D.参考答案:D【分析】根据点的直角坐标系求出,再由,即可求出,从而得到点P的极坐标。【详解】由于点P的直角坐标为,则,再由,可得:,所以点P的极坐标为;故答案选D【点睛】本题考查把点的直角坐标转化为极坐标的方法,属于基础题。3.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【分析】先解不等式,再根据两个解集包含关系得结果.【详解】,又,所以“”是“”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“?”为真,则是的充分条件.2.等价法:利用?与非?非,?与非?非,?与非?非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若?,则是的充分条件或是的必要条件;若=,则是的充要条件.4.点是抛物线上一点,到该抛物线焦点的距离为,则点的横坐标为()A.2

B.3

C.4

D.5参考答案:B略5.如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的体积为(

)A.

B.

C.

D.

参考答案:B略6.知抛物线的焦点和点为抛物线上一点,则的最小值是(

A.3

B.9

C.12

D.6参考答案:C7.为了解儿子身高与其父亲身高的关系,随机抽取3对父子的身高数据如下:则y对x的线性回归方程为()父亲身高x(cm)174176178儿子身高y(cm)176175177

A. B.

C. D.参考答案:B8.已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于(

)A. B. C. D.参考答案:B【考点】由三视图求面积、体积.【专题】计算题.【分析】由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是斜边上的高是1的直角三角形,则两条直角边是,斜边是2与底面垂直的侧面是一个边长为2的正三角形,求出面积.【解答】解:由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是斜边上的高是1的直角三角形,则两条直角边是,斜边是2,∴底面的面积是=1,与底面垂直的侧面是一个边长为2的正三角形,∴三棱锥的高是,∴三棱锥的体积是故选B.【点评】本题考查由三视图还原几何体,本题解题的关键是求出几何体中各个部分的长度,特别注意本题所给的长度1,这是底面三角形斜边的高度.9.长方体的一个顶点上三条棱长分别是,且它的个顶点都在同一球面上,则这个球的表面积是

A.

B.

C.

D.都不对参考答案:B10.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是()A. B. C. D.参考答案:C【考点】函数的单调性与导数的关系.【分析】先根据导函数的图象确定导函数大于0的范围和小于0的x的范围,进而根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减确定原函数的单调增减区间.【解答】解:由y=f'(x)的图象易得当x<0或x>2时,f'(x)>0,故函数y=f(x)在区间(﹣∞,0)和(2,+∞)上单调递增;当0<x<2时,f'(x)<0,故函数y=f(x)在区间(0,2)上单调递减;故选C.二、填空题:本大题共7小题,每小题4分,共28分11.已知变数x,y满足约束条件,目标函数z=x+ay(a≥0)仅在点(2,2)处取得最大值,则a的取值范围为.参考答案:【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出a的取值范围.【解答】解:作出不等式对应的平面区域,当a=0时,z=x,即x=z,此时不成立.由z=x+ay得y=﹣x+,要使目标函数z=x+ay(a≥0)仅在点(2,2)处取得最大值,则阴影部分区域在直线y=﹣x+的下方,即目标函数的斜率k=﹣,满足k>kAC,即﹣>﹣3,∵a>0,∴a>,即a的取值范围为,故答案为:.12.非负实数,满足,则的最大值_________.参考答案:略13.连续抛掷一枚硬币两次,则两次正面都向上的概率是

参考答案:14.斜率为1的直线经过抛物线y2=4x的焦点,与抛物线相交于A,B两点,则|AB|=. 参考答案:8【考点】抛物线的简单性质. 【专题】计算题. 【分析】先根据抛物线方程求得抛物线的焦点坐标,进而根据点斜式求得直线的方程与抛物线方程联立,消去y,根据韦达定理求得x1+x2=的值,进而根据抛物线的定义可知|AB|=x1++x2+求得答案. 【解答】解:抛物线焦点为(1,0) 则直线方程为y=x﹣1,代入抛物线方程得x2﹣6x+1=0 ∴x1+x2=6 根据抛物线的定义可知|AB|=x1++x2+=x1+x2+p=6+2=8 故答案为:8 【点评】本题主要考查了抛物线的简单性质.解题的关键是灵活利用了抛物线的定义.15.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为

.参考答案:16.过双曲线的右焦点,倾斜角为的直线交双曲线于A、B两点,则参考答案:17.焦点在直线上的抛物线标准方程为

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知直线l与两坐标轴所围成的三角形的面积为3,分别求满足下列条件的直线l的方程:(1)斜率为;

(2)过定点P(-3,4).参考答案:(1)设直线l的方程为y=x+b,直线l与x轴、y轴交于点M、N,则M(-2b,0),N(0,b),所以S△MON=|-2b||b|=b2=3,所以b=±,所以直线l的方程为y=x±,即x-2y+2=0或x-2y-2=0.(2)设直线l的方程为y-4=k(x+3),直线l与x轴、y轴交于点M、N,则M,N(0,3k+4),所以S△MON=|3k+4|=3,即(3k+4)2=6|k|.解方程(3k+4)2=6k(无实数解)与(3k+4)2=-6k得k=-或k=-,所以,所求直线l的方程为y-4=-(x+3)或y-4=-(x+3),即2x+3y-6=0或8x+3y+12=0.19.求下列两点间的距离:(1)

A(1,1,0),B(1,1,1);(2)

C(-3,1,5),D(0,-2,3).参考答案:解析:(1)|AB|=

(2)|CD|==

20.(6分)已知三个顶点坐标分别为.

(1)求边上的高线所在的直线方程;

(2)求边上的中线所在的直线方程;ks5u参考答案:解:(1)

ks5u边上的高线所在的直线方程为:,即:(2)的中点的坐标为边上的中线所在的直线方程为:略21.(本小题满分10分)已知椭圆的中心在原点,左焦点为,右顶点为D(2,0),设点A(.(1)求椭圆的标准方程(2)若一过原点的直线与椭圆交于点B,C,求的面积最大值,参考答案:(1);(2)

.22.

已知:0<a<b<c<d且a+d=b+c

求证:<参考答案:证明:因为和都是正数,

所以为了证明<

只需证

()2<()2

只需

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论