2024年华东师大版高一数学上册月考试卷含答案_第1页
2024年华东师大版高一数学上册月考试卷含答案_第2页
2024年华东师大版高一数学上册月考试卷含答案_第3页
2024年华东师大版高一数学上册月考试卷含答案_第4页
2024年华东师大版高一数学上册月考试卷含答案_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年华东师大版高一数学上册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、【题文】幂指函数在求导时,可运用对数法:在函数解析式两边求对数得两边同时求导得于是。

运用此方法可以探求得知的一个单调递增区间为()A.(0,2)B.(2,3)C.(e,4)D.(3,8)2、【题文】已知则()A.B.C.D.3、【题文】函数的定义域为()A.B.C.D.4、【题文】设的值为()A.0B.1C.2D.35、已知偶函数满足且在区间上单调递增.不等式的解集为()A.B.C.D.6、要得到y=sin(2x-)的图象,需要将函数y=sin(2x+)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位评卷人得分二、填空题(共9题,共18分)7、阅读下面用For语句写出的算法.说明该算法的处理功能____.

8、设全集U={1,2,3,4,5,6,7,8},A,B是U的子集,若A∩B={2,6},(CUA)∩B={4,8},(CUA)∩(CUB)={1,5},则A=____,B=____.9、方程9x-6·3x-7=0的解是____.10、在等比数列中,若则的值为.11、【题文】圆x2+y2+2x+4y-15=0上到直线x-2y=0的距离为的点的个数是________.

12、在三阶行列式中,5的余子式的值为____.13、=______.14、在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=a=2,ccosB+bcosC=2acosB,则b的值为______.15、设x1,x2x3的平均数是标准差是s,则另二组数2x1+1,2x2+1,,2xn+1的平均数和标准差分别是______.评卷人得分三、证明题(共7题,共14分)16、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:

(1)AD=AE

(2)PC•CE=PA•BE.17、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面积S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.18、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.19、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.20、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.21、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.22、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、作图题(共3题,共24分)23、作出函数y=的图象.24、画出计算1++++的程序框图.25、某潜艇为躲避反潜飞机的侦查,紧急下潜50m后,又以15km/h的速度,沿北偏东45°前行5min,又以10km/h的速度,沿北偏东60°前行8min,最后摆脱了反潜飞机的侦查.试画出潜艇整个过程的位移示意图.评卷人得分五、计算题(共1题,共9分)26、若∠A是锐角,且cosA=,则cos(90°-A)=____.评卷人得分六、综合题(共2题,共10分)27、抛物线y=ax2+bx+c(a≠0)过点A(1;-3),B(3,-3),C(-1,5),顶点为M点.

(1)求该抛物线的解析式.

(2)试判断抛物线上是否存在一点P;使∠POM=90°.若不存在,说明理由;若存在,求出P点的坐标.

(3)试判断抛物线上是否存在一点K,使∠OMK=90°,若不存在,说明理由;若存在,求出K点的坐标.28、已知:甲;乙两车分别从相距300(km)的M、N两地同时出发相向而行;其中甲到达N地后立即返回,图1、图2分别是它们离各自出发地的距离y(km)与行驶时间x(h)之间的函数图象.

(1)试求线段AB所对应的函数关系式;并写出自变量的取值范围;

(2)当它们行驶到与各自出发地距离相等时,用了(h);求乙车的速度;

(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.参考答案一、选择题(共6题,共12分)1、A【分析】【解析】

试题分析:由题意可知令可以解得所以A是一个单调区间.

考点:本小题主要考查新定义下函数的求导和利用导数求单调区间;考查学生类比的能力和运算求解能力.

点评:新定义问题要仔细读题,根据新定义把问题转化为熟悉的题型来解决,此类问题一般难度不大.【解析】【答案】A2、C【分析】【解析】

试题分析:因为故

考点:指数函数和对数函数的图象和性质.【解析】【答案】C3、A【分析】【解析】本题考查函数的定义域及求法.

根据函数解析式确定函数的定义域;就是使函数解析式有意义的自变量的取值范围,建立不等式(组),解不等式(组).

要使函数有意义,需使解得所以函数的定义域是故选A【解析】【答案】4、C【分析】【解析】略【解析】【答案】C5、B【分析】【解答】因为偶函数在区间上是增函数且所以可化为则有解得的取值范围是选B.6、D【分析】解:∵y=sin(2x-)=sin[2(x-)+];

∴需要将函数y=sin(2x+)的图象向右平移个单位;即可;

故选:D

根据三角函数之间的关系即可得到结论.

本题主要考查三角函数图象之间的关系,比较基础.【解析】【答案】D二、填空题(共9题,共18分)7、略

【分析】

分析程序中各变量;各语句的作用;

再根据流程图所示的顺序;可知:

该程序的作用是累加并输出S=1+2+3++20的值.

故答案为:S=1+2+3++20.

【解析】【答案】分析程序中各变量;各语句的作用;再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1+2+3++20的值.

8、略

【分析】

∵全集U={1;2,3,4,5,6,7,8},A,B是U的子集;

A∩B={2,6},(CUA)∩B={4,8},(CUA)∩(CUB)={1;5};

作出文氏图:

结合文氏图;知集合A={2,3,6,7},B={2,4,6,8}.

故答案为:{2;3,6,7},{2,4,6,8}.

【解析】【答案】根据题设条件;作出文氏图,结合文氏图能够得到集合A和集合B.

9、略

【分析】【解析】试题分析:令t=3x,则原方程化为,-7=0,解得,t=7,或t=-1(舍去),所以,3x=7,x=log37。考点:本题主要考查指数方程的解法。【解析】【答案】x=log3710、略

【分析】因为成等比数列,并且符合相同,所以【解析】【答案】11、略

【分析】【解析】

圆的方程x2+y2+2x+4y-15=0化为标准式为(x+1)2+(y+2)2=20,其圆心坐标为(-1,-2),半径r=2由点到直线的距离公式得圆心到直线x-2y=0的距离d=如图所示,圆到直线x-2y=0的距离为的点有4个.【解析】【答案】412、﹣21【分析】【解答】解:由题意,去掉5所在行与列得:

故答案为﹣21.

【分析】去掉5所在行与列,即得5的余子式,从而求值.13、略

【分析】解:=-log225•log38•log59=-••=••=-12

故答案为-:12.

首先利用对数的运算性质得出=-log225•log38•log59;由换底公式可将原式对数的底数都换成以10为底的对数,约分可得值.

考查学生灵活运用换底公式化简求值的能力,灵活运用对数运算性质是解题的关键,属于基础题.【解析】-1214、略

【分析】解:∵ccosB+bcosC=2acosB;

∴利用正弦定理化简得:2sinAcosB=sinBcosC+sinCcosB;

整理得:2sinAcosB=sin(B+C)=sinA;

∵sinA≠0,∴cosB=

则∠B=60°,sinB=

∵sinA=a=2;

∴由正弦定理可得:b===.

故答案为:.

已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosB的值,即可确定出B的度数,可求sinB,结合正弦定理即可解得b的值.

此题考查了正弦定理,两角和与差的正弦函数公式,诱导公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.【解析】15、略

【分析】解:∵x1,x2x3的平均数是标准差是s;

∴2x1+1,2x2+1,,2xn+1的平均数是

标准差是2s.

故答案为:2+1;2s

利用平均数和标准差的性质求解.

本题考查平均数和标准差的求法,是基础题,解题时要认真审题.【解析】2+1,2s三、证明题(共7题,共14分)16、略

【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;

即可得到结论;

(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,

∵PC是⊙O的切线;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB为⊙O的直径;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC•CE=PA•BE.17、略

【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;

(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;

则CE=AC•sin(α+β)=bsin(α+β);

∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根据题意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB•ACsin(α+β)=BD•AD+CD•AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.18、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.19、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.20、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.21、略

【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;

(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F为AC中点;

∴cosC==.

答:cosC的值是.

(3)BF过圆心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.22、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.四、作图题(共3题,共24分)23、【解答】图象如图所示。

【分析】【分析】描点画图即可24、解:程序框图如下:

【分析】【分析】根据题意,设计的程序框图时需要分别设置一个累加变量S和一个计数变量i,以及判断项数的判断框.25、解:由题意作示意图如下;

【分析】【分析】由题意作示意图。五、计算题(共1题,共9分)26、略

【分析】【分析】首先根据诱导公式得出cos(90°-A)=sinA,再根据cosA2+sinA2=1求解即可.【解析】【解答】解:∵cosA2+sinA2=1;

又A为锐角,cosA=;

∴sinA=.

∴cos(90°-A)=sinA=.

故答案为:.六、综合题(共2题,共10分)27、略

【分析】【分析】(1)将A(1,-3),B(3,-3),C(-1,5)三点坐标代入y=ax2+bx+c中,列方程组求a、b;c的值;得出抛物线解析式;

(2)抛物线上存在一点P,使∠POM=90˚.设(a,a2-4a);过P点作PE⊥y轴,垂足为E;过M点作MF⊥y轴,垂足为F,利用互余关系证明Rt△OEP∽Rt△MFO,利用相似比求a即可;

(3)抛物线上必存在一点K,使∠OMK=90˚.过顶点M作MN⊥OM,交y轴于点N,在Rt△OMN中,利用互余关系证明△OFM∽△MFN,利用相似比求N点坐标,再求直线MN解析式,将直线MN解析式与抛物线解析式联立,可求K点坐标.【解析】【解答】解:(1)根据题意,得,解得;

∴抛物线的解析式为y=x2-4x;

(2)抛物线上存在一点P;使∠POM=90˚.

x=-=-=2,y===-4;

∴顶点M的坐标为(2;-4);

设抛物线上存在一点P,满足OP⊥OM,其坐标为(a,a2-4a);

过P点作PE⊥y轴;垂足为E;过M点作MF⊥y轴,垂足为F.

则∠POE+∠MOF=90˚;∠POE+∠EPO=90˚.

∴∠EPO=∠FOM.

∵∠OEP=∠MFO=90˚;

∴Rt△OEP∽Rt△MFO.

∴OE:MF=EP:OF.

即(a2-4a):2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论