第三讲-机械能守恒定律(原卷版)_第1页
第三讲-机械能守恒定律(原卷版)_第2页
第三讲-机械能守恒定律(原卷版)_第3页
第三讲-机械能守恒定律(原卷版)_第4页
第三讲-机械能守恒定律(原卷版)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三讲机械能守恒定律知识梳理一、重力势能1.定义物体由于被举高而具有的能量,叫作重力势能。2.表达式Ep=mgh,其中h是相对于参考平面(零势能面)的高度。3.特点(1)系统性:重力势能是地球与物体所组成的“系统”所共有的。(2)相对性:重力势能的数值与所选参考平面有关,物体在参考平面上方,h>0,在参考平面下方,h<0.(3)标量性:重力势能是标量,正负表示大小。4.重力做功与重力势能变化的关系(1)重力做功不引起物体机械能的变化(2)重力对物体做正功,重力势能减小,重力对物体做负功,重力势能增大。(3)重力对物体做的功等于物体重力势能的减少量,即WG=Ep1-Ep2=-(Ep2-Ep1)=-ΔEp。(4)重力势能的变化量是绝对的,与参考平面的选取无关。二、弹性势能1.定义发生弹性形变的物体的各部分之间,由于有弹力的相互作用,也具有势能,这种势能叫作弹性势能。2.大小:弹簧的弹性势能跟弹簧的形变量及劲度系数有关,形变量越大,劲度系数越大,弹性势能就越大。3.弹力做功与弹性势能变化的关系弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增加,用公式表示:W=-ΔEp。三、机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变。2.常用的三种表达式(1)守恒式:E1=E2或Ek1+Ep1=Ek2+Ep2。E1、E2分别表示系统初末状态时的总机械能。(2)转化式:ΔEk=-ΔEp或ΔEk增=ΔEp减。表示系统势能的减少量等于动能的增加量。(3)转移式:ΔEA=-ΔEB或ΔEA增=ΔEB减。表示系统只有A、B两物体时,A增加的机械能等于B减少的机械能。3.对机械能守恒定律的理解(1)只受重力或弹力作用,系统的机械能守恒。(2)除受重力或弹力之外,还受其他力,但其他力不做功,只有重力或系统内的弹力做功,系统机械能守恒。(3)除受重力或弹力之外,还受其他力,但其他力所做功的代数和为零,系统机械能守恒。(4)系统跟外界没有发生机械能的传递,系统内、外也没有机械能与其他形式的能发生转化。知识训练考点一、机械能守恒的判断1.机械能是否守恒的三种判断方法

(1)利用机械能的定义判断:若物体动能、势能之和不变,则机械能守恒.

(2)利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功(或做功代数和为0),则机械能守恒.

(3)利用能量转化判断:若物体或系统与外界没有能量交换,物体或系统也没有机械能与其他形式能的转化,则机械能守恒.

例1、神舟号载人飞船在发射至返回的过程中,以下哪些阶段中返回舱的机械能是守恒的()A.飞船升空的阶段B.飞船在椭圆轨道上绕地球运行的阶段C.返回舱在大气层以外向着地球做无动力飞行的阶段D.降落伞张开后,返回舱下降的阶段例2、(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面上,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计任何阻力和定滑轮质量时,A加速下落、B加速上升过程中,A、B系统机械能守恒D.丁图中,小球在竖直平面内来回摆动(不计空气阻力),小球的机械能守恒例3、(多选)如图所示,将一个内外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一固定的竖直墙壁(不与槽粘连).现让一小球自左端槽口A点的正上方由静止开始下落,从A点与半圆形槽相切进入槽内,则下列说法正确的是()A.小球在半圆形槽内运动的全过程中,只有重力对它做功B.小球从A点向半圆形槽的最低点运动的过程中,小球的机械能守恒C.小球机械能守恒D.小球从下落到从右侧离开半圆形槽的过程中,机械能守恒课堂随练训练1、以下对机械能守恒的理解,正确的是()A.如果机械能只在系统内部物体间转移,则该系统机械能一定守恒B.如果系统内部只有动能与势能的相互转化,则该系统机械能一定守恒C.如果物体受力平衡,则物体与地球组成的系统机械能一定守恒D.如果外力对一个系统所做的功为0,则该系统机械能一定守恒训练2、如图所示,小球从高处下落到竖直放置的轻弹簧上,弹簧一直保持竖直,空气阻力不计,那么小球从接触弹簧开始到将弹簧压缩到最短的过程中,下列说法中正确的是()A.小球的动能一直减小B.小球的机械能守恒C.克服弹力做功大于重力做功D.最大弹性势能等于小球减少的动能训练3、(多选)在如图所示的物理过程示意图中,甲图为一端固定有小球的轻杆,从右偏上30°角释放后绕光滑支点摆动;乙图中轻绳一端连着一小球,从右偏上30°角处自由释放;丙图为物体A将弹簧压缩的过程;丁图为不计任何阻力和定滑轮质量时,A加速下落,B加速上升的过程。关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是()A.甲图中小球机械能守恒B.乙图中小球机械能守恒C.丙图中物体A的机械能守恒D.丁图中A、B组成的系统机械能守恒训练4、如图2所示,P、Q两球质量相等,开始两球静止,将P上方的细绳烧断,在Q落地之前,下列说法正确的是(不计空气阻力)()图2A.在任一时刻,两球动能相等B.在任一时刻,两球加速度相等C.在任一时刻,两球和弹簧组成的系统动能与重力势能之和保持不变D.在任一时刻,两球和弹簧组成的系统机械能是不变的考点二、单个物体的机械能守恒1.表达式

2.一般步骤

例1、(多选)如图所示,两个质量相同的小球A、B,用细线悬挂在等高的O1、O2点,A球的悬线比B球的悬线长,把两球的悬线均拉到水平位置后将小球无初速度释放,则经最低点时(以悬点所在的水平面为参考平面)()A.B球的动能大于A球的动能B.A球的动能大于B球的动能C.A球的机械能大于B球的机械能D.A球的机械能等于B球的机械能例2、如图所示,运动员把质量为m的足球从水平地面踢出,足球在空中达到的最大高度为h,在最高点时的速度为v,不计空气阻力,重力加速度为g,则运动员踢球时对足球做的功为()A.eq\f(1,2)mv2 B.mghC.mgh+eq\f(1,2)mv2 D.mgh+mv2例3、(多选)(2021·湖南株洲市检测)如图甲所示,轻绳的一端固定在O点,另一端系一小球。小球在竖直平面内做完整的圆周运动的过程中,绳子的拉力F的大小与小球离最低点的高度h的关系如图乙所示。忽略空气阻力,重力加速度g取10m/s2,则()A.圆周半径为1.0mB.小球质量为0.5kgC.轻绳转至水平时拉力为30ND.小球通过最高点的速度为4m/s例4、(2021·浙江1月选考·20改编)如图所示,竖直平面内由倾角α=60°的斜面轨道AB、半径均为R的半圆形细圆管轨道BCDE和eq\f(1,6)圆周细圆管轨道EFG构成一游戏装置固定于地面,B、E两处轨道平滑连接,轨道所在平面与竖直墙面垂直.轨道出口处G和圆心O2的连线,以及O2、E、O1和B等四点连成的直线与水平线间的夹角均为θ=30°,G点与竖直墙面的距离d=eq\r(3)R.现将质量为m的小球从斜面的某高度h处静止释放.小球只有与竖直墙面间的碰撞可视为弹性碰撞,不计小球大小和所受阻力.(1)若释放处高度h=h0,当小球第一次运动到圆管最低点C时,求速度大小vC;(2)求小球在圆管内与圆心O1点等高的D点所受弹力FN与h的关系式;(3)若小球释放后能从原路返回到出发点,高度h应该满足什么条件?课堂随练训练1、(单个物体的情形)(2021·海南高考)水上乐园有一末段水平的滑梯,人从滑梯顶端由静止开始滑下后落入水中。如图所示,滑梯顶端到末端的高度H=4.0m,末端到水面的高度h=1.0m。取重力加速度g=10m/s2,将人视为质点,不计摩擦和空气阻力。则人的落水点到滑梯末端的水平距离为()A.4.0m B.4.5mC.5.0m D.5.5m训练2、一根质量为m、长为L的均匀链条一半放在光滑的水平桌面上,另一半悬在桌边,桌面足够高,如图a所示。若将一个质量也为m的小球分别拴在链条左端或右端,如图b、图c所示,约束链条的挡板光滑,三种情况下链条均由静止释放,当整根链条刚离开桌面时,设它们的速度分别为va、vb、vc,则关于va、vb、vc的关系,下列判断中正确的是()A.va=vb=vc B.va<vb<vcC.vc>va>vb D.va>vb>vc训练3、一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替,如图甲所示,曲线上A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点作一个圆,在极限情况下,这个圆叫作A点的曲率圆,其半径叫作A点的曲率半径。现将一物体沿着与水平面成α角的方向以某一速度从地面抛出,如图乙所示,其轨迹最高点P离地面的高度为h,曲率半径为eq\f(h,2),忽略空气阻力,则tanα的值为()A.eq\f(\r(2),2) B.eq\r(2)C.2 D.4考点三、多物体组成的系统机械能守恒的应用

1.轻绳连接的物体系统模型常见情景模型提醒①分清两物体是速度大小相等,还是沿绳方向的分速度大小相等。②用好两物体的位移大小关系或竖直方向高度变化的关系。③对于单个物体,一般绳上的力要做功,机械能不守恒;但对于绳连接的系统,机械能则可能守恒。2.轻杆连接的物体系统模型常见情景模型特点①平动时两物体线速度相等,转动时两物体角速度相等。②杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒。③对于杆和球组成的系统,忽略空气阻力和各种摩擦且没有其他力对系统做功,则系统机械能守恒。3.轻弹簧连接的物体系统模型模型特点由轻弹簧连接的物体系统,一般既有重力做功又有弹簧弹力做功,这时系统内物体的动能、重力势能和弹簧的弹性势能相互转化,而总的机械能守恒。两点提醒①对同一弹簧,弹性势能的大小完全由弹簧的形变量决定,无论弹簧伸长还是压缩。②弹簧两端物体把弹簧拉伸至最长(或压缩至最短)时,两端的物体具有相同的速度,弹性势能最大。例1、(2020·江苏高考)如图所示,鼓形轮的半径为R,可绕固定的光滑水平轴O转动。在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m的小球,球与O的距离均为2R。在轮上绕有长绳,绳上悬挂着质量为M的重物。重物由静止下落,带动鼓形轮转动。重物落地后鼓形轮匀速转动,转动的角速度为ω。绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g。求:(1)重物落地后,小球线速度的大小v;(2)重物落地后一小球转到水平位置A,此时该球受到杆的作用力的大小F;(3)重物下落的高度h。例2、(多选)如图所示,轻质弹簧的一端与固定的竖直板P连接,另一端与物体A相连,物体A置于光滑水平桌面上,A右端连接一细线,细线绕过光滑的定滑轮与物体B相连。开始时托住B,让A处于静止状态且细线恰好伸直,然后由静止释放B,直至B获得最大速度。下列有关该过程的分析正确的是()A.B受到细线的拉力保持不变B.A、B组成的系统机械能不守恒C.B机械能的减少量小于弹簧弹性势能的增加量D.当弹簧的拉力等于B的重力时,A的动能最大例3、质量均为m的物体A和B分别系在一根不计质量的细绳两端,绳子跨过固定在倾角为30°的斜面顶端的定滑轮上,斜面固定在水平地面上,开始时把物体B拉到斜面底端,这时物体A离地面的高度为0.8m,如图所示.若摩擦力均不计,从静止开始放手让它们运动.(斜面足够长,物体A着地后不反弹,g取10m/s2)求:(1)物体A着地时的速度大小;(2)物体A着地后物体B继续沿斜面上滑的最大距离.例4、如图所示,物体A的质量为M,圆环B的质量为m,由绳子通过定滑轮连接在一起,圆环套在光滑的竖直杆上.开始时连接圆环的绳子水平,长度l=4m.现从静止释放圆环,不计定滑轮和空气的阻力,g取10m/s2.若圆环下降h=3m时的速度v=5m/s,则A和B的质量关系为()A.eq\f(M,m)=eq\f(35,29) B.eq\f(M,m)=eq\f(7,9)C.eq\f(M,m)=eq\f(39,25) D.eq\f(M,m)=eq\f(15,19)课堂随练训练1、如图所示,质量不计的细直硬棒长为2L,其一端O点用铰链与固定转轴连接,在细棒的中点固定质量为2m的小球甲,在细棒的另一端固定质量为m的小球乙。将棒置于水平位置由静止开始释放,棒与球组成的系统将在竖直平面内做无阻力的转动。则该系统在由水平位置转到竖直位置的过程中()A.系统的机械能不守恒B.系统中细棒对乙球做正功C.甲、乙两球所受的向心力不相等D.乙球转到竖直位置时的速度比甲球小训练2、(多选)如图所示,一根不可伸长的轻绳跨过光滑且不计质量的定滑轮,绳两端各系一小球a和b。a球质量为m,静置于地面上;b球质量为2m,用手托住,高度为h,此时轻绳刚好拉紧而没有张力。小球由静止释放后,在小球b下落过程中,下列说法正确的是()A.小球a处于超重状态,小球b处于失重状态B.绳的拉力对a球做的功等于a球机械能的增量C.小球b落地瞬间的速度大小为eq\f(\r(6gh),2)D.小球b的加速度大小为eq\f(g,4)训练3、(多选)如图所示,三个小球A、B、C的质量均为m,A与B、C间通过铰链用轻杆连接,杆长为L,B、C置于水平地面上,用一轻质弹簧连接,弹簧处于原长。现A由静止释放下降到最低点,两轻杆间夹角α由60°变为120°。A、B、C在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。则此下降过程中,以下说法正确的是()A.A的动能最大时,B、C的动能均为零B.A的动能最大时,B受到地面的支持力等于eq\f(3,2)mgC.自静止释放到A的动能最大时,A球机械能减少量等于弹簧弹性势能的增加量D.弹簧的弹性势能最大值为eq\f(\r(3)-1,2)mgL训练4、如图所示,长直轻杆两端分别固定小球A和B,两球质量均为m,两球半径忽略不计,杆的长度为L。先将杆AB竖直靠放在竖直墙上,轻轻拨动小球B,使小球B在水平面上由静止开始向右滑动,当小球A沿墙下滑距离为eq\f(L,2)时,下列说法正确的是(不计一切摩擦,重力加速度为g)()A.杆对小球A做功为eq\f(1,4)mgLB.小球A、B的速度都为eq\f(1,2)eq\r(gL)C.小球A、B的速度分别为eq\f(1,2)eq\r(3gL)和eq\f(1,2)eq\r(gL)D.杆与小球A、B组成的系统机械能减少了eq\f(1,2)mgL训练5、(2016·全国卷Ⅱ)(多选)如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连。现将小球从M点由静止释放,它在下降的过程中经过了N点。已知在M、N两点处,弹簧对小球的弹力大小相等,且∠ONM<∠OMN<eq\f(π,2)。在小球从M点运动到N点的过程中,()A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N点时的动能等于其在M、N两点的重力势能差同步训练1、如图所示,斜劈劈尖顶着竖直墙壁静止在水平面上.现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法中正确的是()A.斜劈对小球的弹力不做功B.斜劈与小球组成的系统机械能守恒C.斜劈的机械能守恒D.小球重力势能的减少量等于斜劈动能的增加量2、如图所示,光滑细杆AB、AC在A点连接,AB竖直放置,AC水平放置,两个相同的中心有小孔的小球M、N,分别套在AB和AC上,并用一细绳相连,细绳恰好被拉直,现由静止释放M、N,在运动过程中,下列说法中正确的是()A.M球的机械能守恒B.M球的机械能增大C.M和N组成的系统机械能守恒D.绳的拉力对N做负功3、如图所示,粗细均匀、两端开口的U形管内装有同种液体,管中液柱总长度为4h,开始时使两边液面高度差为h,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度为()A.eq\r(\f(1,8)gh) B.eq\r(\f(1,6)gh)C.eq\r(\f(1,4)gh) D.eq\r(\f(1,2)gh)4、如图所示,将一质量为m的小球从A点以初速度v斜向上抛出,小球先后经过B、C两点。已知B、C之间的竖直高度和C、A之间的竖直高度都为h,重力加速度为g,取A点所在的平面为参考平面,不考虑空气阻力,则()A.小球在B点的机械能是在C点机械能的两倍B.小球在B点的动能是在C点动能的两倍C.小球在B点的动能为eq\f(1,2)mv2+2mghD.小球在C点的动能为eq\f(1,2)mv2-mgh5、质量分别为m和2m的两个小球P和Q,中间用轻质杆固定连接,杆长为L,在离P球eq\f(1,3)处有一个光滑固定转轴O,如图所示.现在把杆置于水平位置后自由释放,Q球顺时针摆动到最低位置,则(重力加速度为g)()A.小球P在最高位置的速度大小为eq\f(\r(gl),3)B.小球Q在最低位置的速度大小为eq\r(\f(2gl,3))C.小球P在此过程中机械能增加量为eq\f(4,9)mgLD.小球Q在此过程中机械能减少eq\f(2,3)mgl6、如图所示,有一光滑轨道ABC,AB部分为半径为R的eq\f(1,4)圆弧,BC部分水平,质量均为m的小球a、b固定在竖直轻杆的两端,轻杆长为R,小球可视为质点,开始时a球处于圆弧上端A点,由静止开始释放小球和轻杆,使其沿光滑弧面下滑,重力加速度为g,下列说法正确的是()A.a球下滑过程中机械能保持不变B.b球下滑过程中机械能保持不变C.a、b球都滑到水平轨道上时速度大小均为eq\r(2gR)D.从释放a、b球到a、b球都滑到水平轨道上,整个过程中轻杆对a球做的功为eq\f(1,2)mgR7、如图所示,可视为质点的小球A、B用不可伸长的细软轻线连接,跨过固定在地面上、半径为R的光滑圆柱,A的质量为B的两倍.当B位于地面上时,A恰与圆柱轴心等高.将A由静止释放,B上升的最大高度是()A.2R B.eq\f(5R,3)C.eq\f(4R,3) D.eq\f(2R,3)8、(2022·武汉东湖区联考)如图所示,有一条长为L=1m的均匀金属链条,有一半在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半竖直下垂在空中,当链条从静止开始释放后链条滑动,则链条刚好全部滑出斜面时的速度为(g取10m/s2)()A.2.5m/s B.eq\f(5\r(2),2)m/sC.eq\r(5)m/s D.eq\f(\r(35),2)m/s9、(多选)如图所示,质量为M的小球套在固定倾斜的光滑杆上,原长为l0的轻质弹簧一端固定于O点,另一端与小球相连,弹簧与杆在同一竖直平面内.图中AO水平,BO间连线长度恰好与弹簧原长相等,且与杆垂直,O′在O的正下方,C是AO′段的中点,θ=30°.现让小球从A处由静止释放,重力加速度为g,下列说法正确的有()A.下滑过程中小球的机械能守恒B.小球滑到B点时的加速度大小为eq\f(\r(3),2)gC.小球下滑到B点时速度最大D.小球下滑到C点时的速度大小为eq\r(2gl0)10、(多选)如图所示,质量为m的小环(可视为质点)套在固定的光滑竖直杆上,一足够长且不可伸长的轻绳一端与小环相连,另一端跨过光滑的定滑轮与质量为M的物块相连,已知M=2m.与定滑轮等高的A点和定滑轮之间的距离为d=3m,定滑轮大小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论