![辗转相除法和更相减损术上课讲义_第1页](http://file4.renrendoc.com/view14/M00/39/27/wKhkGWeGE92AQHc2AACMiAIFtm8077.jpg)
![辗转相除法和更相减损术上课讲义_第2页](http://file4.renrendoc.com/view14/M00/39/27/wKhkGWeGE92AQHc2AACMiAIFtm80772.jpg)
![辗转相除法和更相减损术上课讲义_第3页](http://file4.renrendoc.com/view14/M00/39/27/wKhkGWeGE92AQHc2AACMiAIFtm80773.jpg)
![辗转相除法和更相减损术上课讲义_第4页](http://file4.renrendoc.com/view14/M00/39/27/wKhkGWeGE92AQHc2AACMiAIFtm80774.jpg)
![辗转相除法和更相减损术上课讲义_第5页](http://file4.renrendoc.com/view14/M00/39/27/wKhkGWeGE92AQHc2AACMiAIFtm80775.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3.1辗转相除法和更相减损术临高中学李吉传2013年5月8日复习1.研究一个实际问题的算法,主要从哪几方面展开?2.在程序框图中算法的基本逻辑结构有哪几种?3.在程序设计中基本的算法语句有哪几种?算法步骤、程序框图和编写程序三方面展开.顺序结构、条件结构、循环结构输入语句、输出语句、赋值语句、条件语句、循环语句一、辗转相除法
思考1:18与30的最大公约数是多少?你是怎样得到的?
先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来即为最大公约数.
思考2:对于8251与6105这两个数,它们的最大公约数是多少?你是怎样得到的?
由于它们公有的质因数较大,利用上述方法求最大公约数就比较困难.有没有其它的方法可以较简单的找出它们的最大公约数呢?
上述求两个正整数的最大公约数的方法称为辗转相除法或欧几里得算法.第一步,给定两个正整数m,n(m>n).第二步,计算m除以n所得的余数r.第三步,m=n,n=r.
第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.
思考5:你能把辗转相除法编成一个计算机程序吗?程序框图开始输入m,n求m除以n的余数rm=nn=rr=0?是输出m结束否INPUTm,nDOr=mMODnm=nn=rLOOPUNTILr=0PRINTmEND
思考6:如果用当型循环结构构造算法,则用辗转相除法求两个正整数m、n的最大公约数的程序框图和程序分别如何表示?开始输入m,n求m除以n的余数rm=nr≠0?否输出m结束是n=rINPUTm,nWHILEr<>0r=mMODnm=nn=rWENDPRINTmEND二、更相减损术
《九章算术》是中国古代的数学专著,其中的“更相减损术”也可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”意思是:
第一步:任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步.
第二步:以较大的数减去较小的数,接着把差与较小的数比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个等数或这个数与约简的数的乘积就是所求的最大公约数.例1:用更相减损术求98与63的最大公约数.98-63=35,14-7=7.21-7=14,28-7=21,35-28=7,63-35=28,因为63不是偶数,所以所以最大公约数是7.
例2分别用辗转相除法和更相减损术求168与93的最大公约数.168=93×1+75,93=75×1+18,75=18×4+3,18=3×6.辗转相除法:更相减损术:168-93=75,
93-75=18,
75-18=57,
57-18=39,
39-18=21,
21-18=3,
18-3=15,
15-3=12,
12-3=9,
9-3=6,
6-3=3.例3用更相减损术求80与36的最大公约数.
例4求325,130,270三个数的最大公约数.
因为325=130×2+65,130=65×2,所以325与130的最大公约数是65.
因为270=65×4+10,65=10×6+5,10=5×2,所以65与270最大公约数是5.
故325,130,270三个数的最大公约数是5.
练习:用更相减损术求两个正整数m,n的最大公约数,可以用什么逻辑结构来构造算法?其算法步骤如何设计?
第一步,给定两个正整数m,n(m>n).
第二步,计算m-n所得的差k.
第三步,比较n与k的大小,其中大者用m表示,小者用n表示.
第四步,若m=n,则m,n的最大公约数等于m;否则,返回第二步.
讨论:该算法的程序框图如何表示?开始输入m,nn>k?m=n是输出m结束m≠n?k=m-n是否n=km=k否
讨论:该程序框图对应的程序如何表述?INPUTm,nWHILEm≠nk=m-nIFn>kTHENm=nn=kELSEm=kENDIFWENDPRINTmEND开始输入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人向企业借款合同书(版)
- 中欧科技创新技术许可合同探讨
- 一篇文章读懂应届生就业合同细则
- 二手房销售合同实施细则
- 个人与公司租车服务合同
- 个人股权转让合同书模板
- 买卖合同撤销协议范本
- 个人贷款合同范本
- 个人借款合同模板:还款计划与约定
- 临时用工合同范例
- 肿瘤护士培训课件
- 新课标体育与健康水平二教案合集
- 2025届高考语文一轮复习知识清单:古代诗歌鉴赏
- 医疗器材申请物价流程
- 我的消防文员职业规划
- 2025年公司品质部部门工作计划
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 华为研发部门绩效考核制度及方案
- CSC资助出国博士联合培养研修计划英文-research-plan
- 《环境管理学》教案
- 2025年蛇年年度营销日历营销建议【2025营销日历】
评论
0/150
提交评论