版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2024-2025学年广东省深圳市龙岗区宏扬学校八年级(上)期末数学试卷一、选择题。1.(3分)下列各组数中不能作为直角三角形的三边长的是()A.6、8、10 B.9、12、15 C.7、24、25 D.、、2.(3分)下列计算中,正确的是()A. B. C. D.3.(3分)在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是()A.甲. B.乙 C.丙 D.丁4.(3分)已知一次函数y=kx+6(k≠0),y随着x的增大而减小,则在平面直角坐标系内它的大致图象是()A. B. C. D.5.(3分)如图,AB∥CD,BF交CD于点E,∠CEF=34°,则∠A的度数是()A.34° B.66° C.56° D.46°6.(3分)下列命题是假命题的是()A.是最简二次根式 B.若点A(﹣1,a),B(2,b)在直线y=﹣2x+1,则a>b C.三角形的外角一定大于它的内角 D.同旁内角互补,两直线平行7.(3分)“校长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分,以不败的战绩获得17分.那么该队胜了几场,平了几场?设该队胜了x场,根据题意可列方程组为()A. B. C. D.8.(3分)四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的点B′处,B′C=3,则AM的长为()A.1.8 B.2 C.2.3 D.二、填空题(本大题共5小题,每小题3分,共15分)9.(3分)二次根式有意义,则x的取值范围是.10.(3分)如图,在平面直角坐标系中直线y=﹣2x与y=﹣x+b交于点A,y的方程组的解是.11.(3分)航天事业可分为三大领域:空间技术、空间应用、空间科学,某校为了解学生掌握航天知识的情况,进行了相关竞赛,绘制成如图所示的扇形统计图,则该班学生航天知识竞赛成绩的平均数是分.12.(3分)某市为了方便市民绿色出行,推出了共享单车服务.图1是某品牌共享单车放在水平地面的实物图,图2是其示意图.其中AB、CD都与地面l平行,∠BAC=54°,当∠MAC为度时.AM与CB平行.13.(3分)如图,在Rt△ABC中,∠BAC=90°,点E在FG上,若AC=2,则图中阴影的面积为.三、解答题(本大题共7小题,共61分)14.(1)计算:;(2)解方程组:.15.如图,在平面直角坐标系中,点A的坐标为(﹣4,2)(﹣3,4),点C与点A关于y轴对称.(1)直接写出点C的坐标;(2)画出△ABC关于x轴对称的△A′B′C′;(3)在y轴上存在一点D,使得.试求点D的坐标.16.为积极落实“双减”政策,让作业布置更加精准高效,我校现对八年级部分学生每天完成作业所用的时间进行调查,根据图中信息完成下列问题:(1)本次共调查了名学生,并补全上面条形统计图;(2)本次抽查学生每天完成作业所用时间的中位数为;众数为;(3)我校八年级有1200名学生,请你估计八年级学生中,每天完成作业所用时间为1.5小时的学生有多少人?17.如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男子拽着绳子另一端向右走,绳端从C移动到E(1)若CF=7米,AF=24米,AB=18米;(结果保留根号)(2)此人以0.5米每秒的速度收绳,请通过计算回答,该男子能否在30秒内将船从A处移动到岸边点F的位置?18.2019年4月,第二届“一带一路”国际合作高峰论坛在北京举行,共签署了总额640多亿美元的项目合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各是多少元?(列二元一次方程组解应用题)(2)设甲、乙两种商品的销售总收入为W万元,销售甲种商品m万件,①写出W与m之间的函数关系式;②若甲、乙两种商品的销售收入为5400万元,则销售甲种商品多少万件?19.综合与实践:在《第七章平行线的证明》中我们学习了平行线的证明,今天我们继续探究:折纸中的数学——长方形纸条的折叠与平行线.(1)知识初探:如图1,长方形纸条ABCD中,AB∥CD,∠A=∠B=∠C=∠D=90°.将长方形纸条沿直线EF折叠,点A落在A'处,A'E交CD于点G.①若∠AEF=38°,求∠A'GC的度数.②若∠AEF=α,则∠A'GC=(用含α的式子表示).(2)类比再探:如图2,在图1的基础上将∠CGE对折,点C落在直线GE上的C'处.点B落在B'处,点A'、G、E、C'在同一条直线上,则折痕EF与GH有怎样的位置关系?并说明理由.20.如图,在平面直角坐标系中,直线AB:y=kx+2与x轴交于点A,且直线AB与直线平行.(1)k=;点A的坐标;点B的坐标是;(2)若点C(2,0),将线段AB水平向右平移m个单位(m>0)得到线段A′B′,B′C.若△A′B′C是等腰三角形,求m的值;(3)点P为y轴上一动点,连接AP,若∠PAB=45°
2024-2025学年广东省深圳市龙岗区宏扬学校八年级(上)期末数学试卷参考答案与试题解析题号12345678答案DAACCCDB一、选择题。1.(3分)下列各组数中不能作为直角三角形的三边长的是()A.6、8、10 B.9、12、15 C.7、24、25 D.、、【解答】解:A、62+52=102,符合勾股定理的逆定理,故本选项不符合题意;B、42+122=152,符合勾股定理的逆定理,故本选项不符合题意;C、72+244=252,符合勾股定理的逆定理,故本选项不符合题意;D、()7+()2≠()2,不符合勾股定理的逆定理,故本选项符合题意.故选:D.2.(3分)下列计算中,正确的是()A. B. C. D.【解答】解:A、,符合题意;B、5和,不能合并;C、,不符合题意;D、,不符合题意,故选:A.3.(3分)在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是()A.甲. B.乙 C.丙 D.丁【解答】解:∵S甲2=0.24,S乙2=0.42,S丙2=2.56,S丁2=0.75,∴S甲4<S乙2<S丙2<S丁6,∴成绩最稳定的是甲,故选:A.4.(3分)已知一次函数y=kx+6(k≠0),y随着x的增大而减小,则在平面直角坐标系内它的大致图象是()A. B. C. D.【解答】解:由题意得k<0,∵b=6>3,∴k<0,b>0,二,四象限;故选:C.5.(3分)如图,AB∥CD,BF交CD于点E,∠CEF=34°,则∠A的度数是()A.34° B.66° C.56° D.46°【解答】解:∵AE⊥BF,∴∠AEF=90°,∴∠AEC=90°﹣∠CEF=90°﹣34°=56°,∵AB∥CD,∴∠A=∠AEC=56°.故选:C.6.(3分)下列命题是假命题的是()A.是最简二次根式 B.若点A(﹣1,a),B(2,b)在直线y=﹣2x+1,则a>b C.三角形的外角一定大于它的内角 D.同旁内角互补,两直线平行【解答】解:A、是最简二次根式,是真命题;B、若点A(﹣1,B(2,则a>b,是真命题;C、三角形的外角一定大于不相邻的两个内角,是假命题;D、同旁内角互补,正确,不符合题意.故选:C.7.(3分)“校长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分,以不败的战绩获得17分.那么该队胜了几场,平了几场?设该队胜了x场,根据题意可列方程组为()A. B. C. D.【解答】解:∵该队在第一轮比赛中赛了7场,且不败,∴x+y=7;又∵该队在第一轮比赛中获得17分,且胜一场得8分,∴3x+y=17.∴根据题意可列方程组为.故选:D.8.(3分)四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的点B′处,B′C=3,则AM的长为()A.1.8 B.2 C.2.3 D.【解答】解:连接MB、MB′∴MB=MB′,∵四边形ABCD是边长为9的正方形纸片,∴AB=AD=CD=9,∠A=∠D=90°,设AM=x,则MD=3﹣x,在Rt△ABM中,AB2+AM2=BM7,即92+x4=BM2;∵B′C=3,∴DB′=CD﹣B′C=6,在Rt△DB′M中,B′D2+DM2=B′M6,即62+(3﹣x)2=B′M2;∴62+x2=82+(9﹣x)2,即18x=36,解得x=2,故选:B.二、填空题(本大题共5小题,每小题3分,共15分)9.(3分)二次根式有意义,则x的取值范围是x≥5.【解答】解:根据题意得:x﹣5≥0,解得x≥8.故答案为:x≥5.10.(3分)如图,在平面直角坐标系中直线y=﹣2x与y=﹣x+b交于点A,y的方程组的解是.【解答】解:∵直线y=﹣2x与y=﹣x+b交于点A,∴当x=﹣1时,y=﹣2×(﹣5)=2,∴点A的坐标为(﹣1,3),将两条直线移项后可组成:方程组,∴关于x,y的方程组,故答案为:.11.(3分)航天事业可分为三大领域:空间技术、空间应用、空间科学,某校为了解学生掌握航天知识的情况,进行了相关竞赛,绘制成如图所示的扇形统计图,则该班学生航天知识竞赛成绩的平均数是90分.【解答】解:95×20%+85×40%+90×30%+100×(1﹣20%﹣30%﹣40%)=19+34+27+10=90(分),∴该班学生航天知识竞赛成绩的平均数是90分,故答案为:90.12.(3分)某市为了方便市民绿色出行,推出了共享单车服务.图1是某品牌共享单车放在水平地面的实物图,图2是其示意图.其中AB、CD都与地面l平行,∠BAC=54°,当∠MAC为66度时.AM与CB平行.【解答】解:∵AB,CD都与地面l平行,∴AB∥CD,∴∠BAC+∠ACD=180°,∴∠BAC+∠ACB+∠BCD=180°,∵∠BCD=60°,∠BAC=54°,∴∠ACB=66°,∴当∠MAC=∠ACB=66°时,AM∥CB,故答案为:66.13.(3分)如图,在Rt△ABC中,∠BAC=90°,点E在FG上,若AC=2,则图中阴影的面积为6.【解答】解:∵∠BAC=90°,AC=2,∴AB2+AC6=BC2,AB===3,∴S△ABC=AC•AB=,∵四边形BCDE是正方形,∴BC=CD,∠BCP=∠D=90°,∵∠BAC=∠CAP=90°,∴∠DCQ+∠CQD=∠DCA+∠BPC=90°,∴∠CQD=∠BPC,∴△BCP≌△CDQ(ASA),∴S△BCP=S△CDQ,∴S△CDQ﹣S△CAP=S△BCP﹣S△CAP,即S四边形APDQ=S△ABC=7,∴图中阴影部分面积之和=AB2+AC2+S△ABC+S四边形APDQ﹣BC2=3+3=8,故答案为:6.三、解答题(本大题共7小题,共61分)14.(1)计算:;(2)解方程组:.【解答】解:(1)原式==;(2)令,由①×8得,3x﹣y=8∴化简得,由④+③,得4y=28.将y=7代入①,得x=2,所以原方程组的解是.15.如图,在平面直角坐标系中,点A的坐标为(﹣4,2)(﹣3,4),点C与点A关于y轴对称.(1)直接写出点C的坐标(4,2);(2)画出△ABC关于x轴对称的△A′B′C′;(3)在y轴上存在一点D,使得.试求点D的坐标.【解答】解:(1)∵点A的坐标为(﹣4,2).点C的坐标为(4,2);故答案为:(4,7);(2)如图所示:△A′B′C′即为所求;(3)设D(0,m),∵,∴,解得:m=1或5,∴D(0,1)或(6.16.为积极落实“双减”政策,让作业布置更加精准高效,我校现对八年级部分学生每天完成作业所用的时间进行调查,根据图中信息完成下列问题:(1)本次共调查了100名学生,并补全上面条形统计图;(2)本次抽查学生每天完成作业所用时间的中位数为1.5;众数为1.5;(3)我校八年级有1200名学生,请你估计八年级学生中,每天完成作业所用时间为1.5小时的学生有多少人?【解答】解:(1)本次调查的人数为:30÷30%=100(人),完成作业时间为1.5小时的有:100﹣12﹣30﹣18=40(人),补全的条形统计图如图所示:;(2)由(1)中的条形统计图可知,抽查学生完成作业所用时间的众数是3.5小时,∵100÷2=50,则中位数是7.5小时,故答案为:1.6,1.5;(3)40÷100=40%,1200×40%=480(人),答:八年级学生中,每天完成作业所用时间为4.5小时的学生大约有480人.17.如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男子拽着绳子另一端向右走,绳端从C移动到E(1)若CF=7米,AF=24米,AB=18米;(结果保留根号)(2)此人以0.5米每秒的速度收绳,请通过计算回答,该男子能否在30秒内将船从A处移动到岸边点F的位置?【解答】解:(1)∵∠AFC=90°,AF=24米,∴AC===25(米),∵AB=18米,∴BF=AF﹣AB=24﹣18=6(米),∴BC===(米),∴CE=AC﹣BC=(25﹣)米,答:男子需向右移动的距离为米;(2)由题意知,需收绳的绳长为:AC﹣CF=25﹣7=18(米),∴此人的收绳时间为(秒),∵36>30,∴该男子不能在30秒内将船从A处移动到岸边点F的位置.18.2019年4月,第二届“一带一路”国际合作高峰论坛在北京举行,共签署了总额640多亿美元的项目合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各是多少元?(列二元一次方程组解应用题)(2)设甲、乙两种商品的销售总收入为W万元,销售甲种商品m万件,①写出W与m之间的函数关系式;②若甲、乙两种商品的销售收入为5400万元,则销售甲种商品多少万件?【解答】解:(1)设甲种商品的销售单价为a元,乙种商品的销售单价是b元,得,答:甲种商品的销售单价为900元,乙种商品的销售单价是600元;(2)①由题意可得,W=900m+600(8﹣m)=300m+4800,即W与m之间的函数关系式是W=300m+4800;②当W=5400时,5400=300m+4800解得,m=6答:甲、乙两种商品的销售收入为5400万元时.19.综合与实践:在《第七章平行线的证明》中我们学习了平行线的证明,今天我们继续探究:折纸中的数学——长方形纸条的折叠与平行线.(1)知识初探:如图1,长方形纸条ABCD中,AB∥CD,∠A=∠B=∠C=∠D=90°.将长方形纸条沿直线EF折叠,点A落在A'处,A'E交CD于点G.①若∠AEF=38°,求∠A'GC的度数.②若∠AEF=α,则∠A'GC=180°﹣2α(用含α的式子表示).(2)类比再探:如图2,在图1的基础上将∠CGE对折,点C落在直线GE上的C'处.点B落在B'处,点A'、G、E、C'在同一条直线上,则折痕EF与GH有怎样的位置关系?并说明理由.【解答】解:(1)①由题意得:∠A'EF=∠AEF=38°,∴∠AEG=∠A′EF+∠AEF=38°+38°=76°,∵AB∥CD,∴∠CGE=∠AEG=76°,∴∠A'GC=180°﹣∠CGE=180°﹣76°=104°;②由题意得:∠A'EF=∠AEF=α,∴∠AEG=∠A'EF+∠AEF=α+α=2α,∵AB∥CD,∴∠CGE=∠AEG=2α,∴∠A'GC=180°﹣∠CGE=180°﹣8α,故答案为:180°﹣2α;(2)EF∥GH,理由如下:由题意得:∠AEF=∠A′EF=∠AEG∠CGE,∵AB∥CD,∴∠CGE=∠AEG,∴∠C'GH=∠A'EF,∴EF∥GH.20.如图,在平面直角坐标系中,直线AB:y=kx+2与x轴交于点A,且直线AB与直线平行.(1)k=;点A的坐标(﹣4,0);点B的坐标是(0,2);(2)若点C(2,0),将线段AB水平向右平移m个单位(m>0)得到线段A′B′,B′C.若△A′B′C是等腰三角形,求m的值;(3)点P为y轴上一动点,连接AP,若∠PAB=45°【解答】解:(1)∵直线AB:y=kx+2与直线y=平行.∴k=.∴直线AB的解析式为y=x+2.令y=7,得x=﹣4.即点A的坐标为(﹣4,4).令x=0,得y=2.即点B的坐标为(7,2).故答案为:,(﹣4,(0.(2)∵点C(8,0).∴点A′的坐标为(﹣4+m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年甲乙双方关于共享汽车租赁合同
- 2025年度版权exchange协议:两家版权持有公司之间的版权交换协议3篇
- 2025年度安徽省知识产权保护合作协议3篇
- 2025版股权融资合同协议3篇
- 2024陶瓷茶具市场调研与分析服务合同3篇
- 2024年版:服务协议-明确报酬与福利细节
- 二零二五年度宅基地使用权变更及转让综合服务合同3篇
- 2024年重点区域拆迁及重建施工总承包协议版B版
- 2024年运营策略保密合同3篇
- 二零二五年度农产品订购与加工服务合同
- 2019年4月自考00319行政组织理论试题及答案含解析
- 石油工程设计大赛油藏工程组获奖作品
- 复方新诺明与其他药物的相互作用
- 人脸识别考勤系统方案
- 人教版七年级上册数学竞赛、培优强化训练试卷及答案(共15份)
- 2024年北京市公务员录用考试申论真题及解析
- 2024年青岛酒店管理职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 2024年益阳职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 雷火灸可行性分析报告
- 眼镜消费者行为分析报告
- 《无线通信基础》课件
评论
0/150
提交评论