版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学考前冲刺预测模拟刷题卷(长沙专用)模拟测试卷04一、选择题(本大题共10小题,每小题3分,满分30分)1.-2的倒数是()A.-2 B. C. D.2【答案】B【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-,故选:B.【点睛】本题难度较低,主要考查学生对倒数等知识点的掌握.2.下列几何体的主视图既是轴对称图形又是中心对称图形的是(
)A. B. C. D.【答案】B【分析】先判断主视图,再根据轴对称图形与中心对称图形的概念求解.【详解】解:A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;B、主视图是是矩形,是轴对称图形,也是中心对称图形,故符合题意;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故不合题意;D、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;故选B.【点睛】本题考查了几何体的三视图,中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.3.下列运算正确的是(
)A. B.C. D.【答案】D【分析】根据完全平方公式,同底数幂相乘,平方差公式,积的乘方运算法则逐项判断即可求解.【详解】解:A、,故本选项错误,不符合题意;B、,故本选项错误,不符合题意;C、,故本选项错误,不符合题意;D、,故本选项正确,符合题意;故选:D.【点睛】本题主要考查了完全平方公式,同底数幂相乘,平方差公式,积的乘方运算,熟练掌握相关知识点是解题的关键.4.我国的“天问一号”火星探测器成功着陆火星,据测算,地球到火星的最近距离约为55000000千米,数据55000000用科学计数法表示为(
)A. B. C. D.【答案】C【分析】科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】解:,故选:C.【点睛】此题考查科学记数法,关键是掌握n的值的确定方法,当原数大于等于10时,n等于原数的整数数位减1.5.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于()A.35° B.45° C.50° D.55°【答案】A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C=∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.信息技术课上,在老师的指导下,小好同学训练打字速度(字/),数据整理如下:15,17,23,15,17,17,19,21,21,18,对于这组数据,下列说法正确的是(
)A.众数是17 B.众数是15 C.中位数是17 D.中位数是18【答案】A【分析】根据中位数、众数的概念求解可得.【详解】解:以上数据重新排列为:15,15,17,17,17,18,19,21,21,23,众数为17、中位数为,故选:.【点睛】本题考查的是众数和中位数的概念;熟练掌握中位数、众数的概念是解题的关键.7.下列说法中,错误的是()A.对角线互相垂直平分的四边形是菱形B.平行四边形对角线的交点到一组对边的距离相等C.已知一次函数y=(a2+1)x﹣3,则y随x的增大而增大D.函数y=2x+b的图像不经过第二象限,则b<0【答案】D【分析】根据菱形的判定,平行四边形的性质,一次函数图像的性质进行分析.【详解】解:A、对角线互相垂直平分的四边形是菱形,故A不符合题意;B、平行四边形对角线的交点到一组对边的距离相等,故B不符合题意;C、a2+1≥1,故一次函数y=(a2+1)x-3,则y随x的增大而增大,故C不符合题意;D、函数y=2x+b的图像不经过第二象限,则b≤0,故D符合题意.故选:D.【点睛】本题考查了菱形的判定与性质,及一次函数图像的性质,熟练掌握菱形与一次函数的相关性质是解题的关键.8.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是()A.28° B.30° C.36° D.56°【答案】A【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°−30°=56°,根据圆周角定理得∠ACB=∠AOB,即可得到∠ACB的大小.【详解】设半圆圆心为O,连OA,OB,如图,∵∠AOB=86°−30°=56°,∴∠ACB=∠AOB=×56°=28°.故选A.【点睛】本题主要考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.某经济开发区,今年一月份工业产值达亿元,第一季度总产值为亿元,二月、三月平均每月的增长率是多少?若设平均每月的增长率为,根据题意,可列方程为(
)A. B.C. D.【答案】B【分析】增长率问题,一般用增长后的量增长前的量增长率),本题可先用表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【详解】解:二月份的产值为:,三月份的产值为:,故第一季度总产值为:.故选B.【点睛】本题考查的是一元二次方程的运用,解此类题目时常常要按顺序列出接下来几个月的产值,再根据题意列出方程即可.10.微信运动和腾讯公益推出了一个爱心公益活动:个人一天中走路步数达到10000及以上可通过微信运动和腾讯基金会向公益活动捐款,如果步数在10000及以上,每步可捐0.0002元.例如小明某天的步数为13000,则可捐2.6元;若一天的步数为8000,则无捐赠资格.已知甲、乙、丙三人某天通过步数共捐赠了6.4元,且甲的步数<乙的步数<丙的步数,则下面说法不正确的是(
)A.甲可能走了10000步 B.乙可能走了17000步C.丙可能走了20000步 D.甲、乙、丙三人可能共走了50000步【答案】B【分析】甲乙丙三人某天通过步数共捐赠了6.4元,可得三人走路的步数的最小值,依据甲的步数<乙的步数<丙的步数可得甲走路的步数必定小于平均数,而丙走路的步数必定大于平均数,进而得出结论.【详解】解:∵6.4÷0.0002=32000(步),∴平均每人走路的步数为32000÷3≈10667(步),∵甲的步数<乙的步数<丙的步数,∴甲走路的步数必定小于平均数,而丙走路的步数必定大于平均数,∴甲可能走了10000步,丙可能走了20000步,故A、C选项正确;若乙走了17000步,则乙和丙的步数之和大于32000步,不合题意,故B选项错误;若丙走路32000步,而甲乙两人走路步数都小于10000步,则甲、乙、丙三人可能共走了50000步,故D选项正确;故选B.【点睛】本题主要考查了随机事件及平均数,熟练掌握随机事件及平均数是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)11.已知,则_______.【答案】0【分析】利用完全平方式的特点把原条件变形为,再利用几个非负数之和为0,则每一个非负数都为0的结论可得答案.【详解】解:因为:所以所以所以,解得所以故答案为0.【点睛】本题考查完全平方式的特点,非负数之和为0的性质,掌握该知识点是关键.12.若最简二次根式与是同类根式,则2a﹣b=___.【答案】9【分析】结合同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.进行求解即可.【详解】解:∵最简二次根式与是同类根式,∴2a﹣4=2,3a+b=a﹣b,解得:a=3,b=﹣3.∴2a﹣b=2×3﹣(﹣3)=9.故答案为:9.【点睛】此题考查了同类二次根式的定义,熟记定义是解题的关键.13.如图,在平面直角坐标系中,直线与相交于A,B两点,且点A在x轴上,则弦的长为_________.【答案】2.【分析】过O作OE⊥AB于C,根据垂径定理可得AC=BC=,可求OA=2,OD=,在Rt△AOD中,由勾股定理,可证△OAC∽△DAO,由相似三角形性质可求即可.【详解】解:过O作OE⊥AB于C,∵AB为弦,∴AC=BC=,∵直线与相交于A,B两点,∴当y=0时,,解得x=-2,∴OA=2,∴当x=0时,,∴OD=,在Rt△AOD中,由勾股定理,∵∠ACO=∠AOD=90°,∠CAO=∠OAD,∴△OAC∽△DAO,即,∴AB=2AC=2,故答案为2.【点睛】本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.14.一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是_________________.【答案】【分析】求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】解:由图可知:黑色方砖有8个小三角形,每4个三角形是大正方形面积的∴黑色方砖在整个地板中所占的比值,∴小球最终停留在黑色区域的概率,故答案为:.【点睛】本题主要考查了简单的概率计算,解题的关键在于能够准确找出黑色方砖面积与整个区域面积的关系.15.若抛物线y=(a-1)x2-2x+3与x轴有交点,则整数a的最大值是______.【答案】0【分析】抛物线与x轴有交点,判别式大于等于0即可求解.【详解】解:∵抛物线与x轴有交点∴,解得:,∵a≠1故答案为0【点睛】此题主要考查了二次函数图像与系数的关系,熟练掌握有关性质是解题的关键,易错点是容易忽略二次项系数不能为0.16.如图,点A是反比例函数图象上一点,轴于点C且与反比例函数的图象交于点B,,连接OA,OB,若的面积为6,则_________.【答案】【分析】利用反比例函数比例系数k的几何意义得到S△AOC=||=-,S△BOC=||=-,利用AB=3BC得到S△ABO=3S△OBC=6,所以-=2,解得=-4,再利用-=6+2得=-16,然后计算+的值.【详解】解:∵AC⊥x轴于点C,与反比例函数y=(x<0)图象交于点B,而<0,<0,∴S△AOC=||=-,S△BOC=||=-,∵AB=3BC,∴S△ABO=3S△OBC=6,即-=2,解得=-4,∵-=6+2,解得=-16,∴+=-16-4=-20.故答案为:-20.【点睛】本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.三、解答题(本大题共9小题,第17~19题每题6分,第20~21题每题8分,第22~23题每题9分,第24~25题每题10分,满分72分。)17.计算:【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.18.若关于x、y的二元一次方程组的解满足x+y>0,求m的取值范围.【答案】m>﹣2【分析】两方程相加可得x+y=m+2,根据题意得出关于m的方程,解之可得.【详解】解:将两个方程相加即可得2x+2y=2m+4,则x+y=m+2,根据题意,得:m+2>0,解得m>﹣2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△ABC;(2)请画出△ABC关于原点对称的△ABC;(3)在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.【答案】(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【分析】(1)按题目的要求平移就可以了;(2)关于原点对称的点的坐标变化是∶横、纵坐标都变为相反数,找到对应点后按顺序连接即可.(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.【详解】(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)作A点关于x轴的对称点A'(1,-1),然后连接对称点与B点,则BA'的解析式为,当时,.∴△PAB如图所示,点P的坐标为:(2,0).20.如图,边长为1的正方形中,点E为的中点.连接,将沿折叠得到交于点G,求的长.【答案】【分析】根据题意,延长交于H连,通过证明、得到,再由得到,进而即可求得的长.【详解】解:延长交于H连,∵由沿折叠得到,∴,,∵E为中点,正方形边长为1,∴,∴,∵四边形是正方形,∴,在和中,,∴,∴,又∵,∴,∵,∴,∴,∴,∴,∴,∵,∴,∴,∴,∵,,,∴,∴,∴.【点睛】本题主要考查了三角形全等的判定及性质、三角形相似的判定及性质以及正方形的性质,熟练掌握相关几何知识是解决本题的关键.21.圆周率是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对有过深入的研究.目前,超级计算机已计算出的小数部分超过31.4万亿位.有学者发现,随着小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.
(1)从的小数部分随机取出一个数字,估计数字是6的概率为________;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)【答案】(1);(2)见解析,【分析】(1)这个事件中有10种等可能性,其中是6的有一种可能性,根据概率公式计算即可;(2)画出树状图计算即可.【详解】(1)∵这个事件中有10种等可能性,其中是6的有一种可能性,∴数字是6的概率为,故答案为:;(2)解:画树状图如图所示:∵共有12种等可能的结果,其中有一幅是祖冲之的画像有6种情况.∴(其中有一幅是祖冲之).【点睛】本题考查了概率公式计算,画树状图或列表法计算概率,熟练掌握概率计算公式,准确画出树状图或列表是解题的关键.22.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件;方案一需要资金最少,最少资金是10万元;(3)节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件【分析】(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,根据题意可直接列出二元一次方程组求解即可;(2)在(1)的基础之上,结合题意,建立关于m的一元一次不等式组,求解即可得到m的范围,从而根据实际意义确定出m的取值,即可确定不同的方案,最后再结合一次函数的性质确定最小值即可;(3)结合(2)的结论,直接求出可节省的资金,然后确定降价后的单价,再建立二元一次方程,并结合实际意义进行求解即可.【详解】解:(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元.根据题意,得,解得:,答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.
(2)根据题意,得,解得:,∵m为整数,∴m可取5、6、7,∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件.设总资金为W万元,则,∵,∴W随m的增大而增大,∴当时,(万元),∴方案一需要资金最少,最少资金是10万元.
(3)由(2)可知,购买甲种农机具5件,乙种农机具5件时,费用最小,根据题意,此时,节省的费用为(万元),降价后的单价分别为:甲种0.8万元,乙种0.3万元,设节省的资金可购买a台甲种,b台乙种,则:,由题意,a,b均为非负整数,∴满足条件的解为:或,∴节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件.【点睛】本题考查二元一次方程组、一元一次不等式组以及一次函数的实际应用,找准等量关系,理解一次函数的性质是解题关键.23.如图,在中,为的平分线,如图,若,求线段的长度.【答案】4.8【分析】在AB上截取AE=AC,连接DE,证明△ACD≌△AED(SAS),得出∠C=∠AED,证出∠B=∠BDE,得出BE=DE,即可得出答案;【详解】解:在AB上截取AE=AC,连接DE,如图1所示:∵AD为∠BAC的平分线,∴∠DAE=∠DAC,在△ACD和△AED中,∴△ACD≌△AED(SAS),∴∠C=∠AED,∵∠C=2∠B,∴∠AED=2∠B,∵∴∴,∴BE=DE,∵∴【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定,证明三角形全等是解题的关键.24.如图,BD是半径为3的⊙O的一条弦,BD=4,点A是⊙O上的一个动点(不与点B,D重合),以A,B,D为顶点作平行四边形ABCD.(1)如图2,若点A是劣弧的中点.①求证:平行四边形ABCD是菱形;②求平行四边形ABCD的面积.(2)若点A运动到优弧上,且平行四边形ABCD有一边与⊙O相切.①求AB的长;②直接写出平行四边形ABCD对角线所夹锐角的正切值.【答案】①证明见解析;②;(2)①AB的长为或;②【分析】(1)①利用等弧所对的弦相等可得,根据一组邻边相等的平行四边形是菱形可得证;②连接AO,交BD于点E,连接OD,根据垂径定理可得,利用勾股定理求出OE的长,即可求解;(2)①分情况讨论当CD与相切时、当BC与相切时,利用垂径定理即可求解;②根据等面积法求出AH的长度,利用勾股定理求出DH的长度,根据正切的定义即可求解.【详解】解:(1)①∵点A是劣弧的中点,∴,∴,∵四边形ABCD是平行四边形,∴平行四边形ABCD是菱形;②连接AO,交BD于点E,连接OD,,∵点A是劣弧的中点,OA为半径,∴,OA平分BD,∴,∵平行四边形ABCD是菱形,∴E为两对角线的交点,在中,,∴,∴;(2)①如图,当CD与相切时,连接DO并延长,交AB于点F,∵CD与相切,∴,∴,∵四边形ABCD是平行四边形,∴,∴,在中,,在中,,∴,解得,∴,∴;如图,当BC与相切时,连接BO并延长,交AD于点G,同理可得,,所以,综上所述,AB的长为或;②过点A作,,由(2)得:根据等面积法可得,解得,在在中,,∴,∴.【点睛】本题考查垂径定理、平行四边形的判定与性质、解直角三角形等内容,掌握分类讨论的思想是解题的关键.25.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),(,),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求出t的取值范围.【答案】(1)y=;(2)当k≠时,“梦之点”的坐标为(,);当k=,s=1时,“梦之点”有无数个;当k=,s≠1时,不存在“梦之点”;(3)t>.【分析】(1)先由“梦之点”的定义得出m=2,再将点P坐标代入y=,运用待定系数法即可求出反比例函数的解析式;(2)假设函数y=3kx+s﹣1(k,s是常数)的图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能公交系统开发合同
- 智能办公软件升级服务合同
- 2024版消防设备共用协议合同书
- 房屋租赁合同纠纷反诉答辩状
- 2024版股权转让转让协议
- 智能安防系统合同
- 浙江省人教版八年级历史与社会上册说课稿4.3.1高度集权的北宋政治
- 《护理服务学习》课件
- 《心肌病病人的护理》课件
- 2025年浙教版七年级物理上册阶段测试试卷
- 新生儿沐浴及抚触护理
- 机械原理课程设计-压床机构的设计
- 教学案例 英语教学案例 市赛一等奖
- 四川省2023职教高考英语试题
- JJG 913-2015浮标式氧气吸入器
- GB/T 28859-2012电子元器件用环氧粉末包封料
- GB/T 12190-2006电磁屏蔽室屏蔽效能的测量方法
- 2020年贵州专升本高等数学真题及答案
- 数学思想与方法期末考试范围答案全
- 调研报告:加强市属国有企业内部审计工作现状、存在的问题及对策建议
- 教学事故(差错)认定处理表(模板)
评论
0/150
提交评论