2024年沪教版高二数学下册阶段测试试卷含答案_第1页
2024年沪教版高二数学下册阶段测试试卷含答案_第2页
2024年沪教版高二数学下册阶段测试试卷含答案_第3页
2024年沪教版高二数学下册阶段测试试卷含答案_第4页
2024年沪教版高二数学下册阶段测试试卷含答案_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年沪教版高二数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、【题文】在等差数列中,已知则该数列前11项和()A.58B.88C.143D.1762、【题文】已知点P在定圆O的圆内或圆周上,动圆C过点P与定圆O相切,则动圆C的圆心轨迹可能是()A.圆或椭圆或双曲线B.两条射线或圆或抛物线C.两条射线或圆或椭圆D.椭圆或双曲线或抛物线3、设抛物线y2=4x的焦点为F,过点F的直线与抛物线交于A,B两点,过AB的中点M作准线的垂线与抛物线交于点P,若则弦长|AB|等于()A.2B.4C.6D.84、圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.25、在M到M上的一一映射中,至少有两个数字与自身对应的映射个数为A.35B.31C.41D.21评卷人得分二、填空题(共5题,共10分)6、函数y=x3+lnx在x=1处的导数为____.7、若函数在区间上单调递减,则实数的取值范围是__________________.8、【题文】某射手射击一次击中10环,9环,8环的概率分别为0.3,0.3,0.2,则他射击一次命中8环或9环的概率为____.9、【题文】若在区间内随机地取出一个数则的概率为____.10、已知三棱锥A-BCO,OA、OB、OC两两垂直且长度均为4,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为______.评卷人得分三、作图题(共8题,共16分)11、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

12、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)13、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)14、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

15、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)16、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)17、分别画一个三棱锥和一个四棱台.评卷人得分四、解答题(共1题,共7分)18、【题文】(满分10分)设式中满足条件求的最大值和最小值。评卷人得分五、计算题(共4题,共40分)19、如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.20、1.(本小题满分12分)已知投资某项目的利润与产品价格的调整有关,在每次调整中价格下降的概率都是.设该项目产品价格在一年内进行2次独立的调整,记产品价格在一年内的下降次数为对该项目每投资十万元,取0、1、2时,一年后相应的利润为1.6万元、2万元、2.4万元.求投资该项目十万元,一年后获得利润的数学期望及方差.21、解关于x的不等式ax2﹣(2a+2)x+4>0.22、已知f(x)=∫1x(4t3﹣)dt,求f(1﹣i)•f(i).评卷人得分六、综合题(共3题,共24分)23、(2009•新洲区校级模拟)如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.则AF•BE=____.24、(2009•新洲区校级模拟)如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.则AF•BE=____.25、(2015·安徽)设椭圆E的方程为+=1(ab0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足=2直线OM的斜率为参考答案一、选择题(共5题,共10分)1、B【分析】【解析】

试题分析:由所以选B.

考点:1.等差数列的前项和公式;2.等差数列的性质.【解析】【答案】B2、C【分析】【解析】当点P在定圆O的圆周上时,圆C与圆O内切或外切,O,P,C三点共线,∴轨迹为两条射线;

当点P在定圆O内时(非圆心),|OC|+|PC|=r0为定值,轨迹为椭圆;

当P与O重合时,圆心轨迹为圆.

【误区警示】本题易因讨论不全,或找错关系而出现错误.【解析】【答案】C3、C【分析】【解答】解:∵抛物线方程为y2=4x;

∴2p=4;p=2,可得抛物线的焦点为F(1,0),准线为l:x=﹣1;

设A(x1,y1),B(x2,y2);直线AB的方程为y=k(x﹣1);

由消去y,得k2x2﹣(2k2+4)x+k2=0;

∴x1+x2=x1x2=1;

∵过AB的中点M作准线的垂线与抛物线交于点P;

∴设P的坐标为(x0,y0),可得y0=(y1+y2);

∵y1=k(x1﹣1),y2=k(x2﹣1);

∴y1+y2=k(x1+x2)﹣2k=k•﹣2k=

得到y0==所以x0==可得P().

∵∴=解之得k2=2;

因此x1+x2==4,根据抛物线的定义可得|AB|=x1+x2+p=4+2=6.

故选:C

【分析】求出抛物线焦点为F(1,0),准线为l:x=﹣1.设A(x1,y1)、B(x2,y2),直线AB的方程为y=k(x﹣1),由AB方程与抛物线方程消去y得关于x的一元二次方程,利用根与系数的关系算出:x1+x2=x1x2=1,由此算出P的坐标为M(),根据利用点到两点间的距离公式解出k2=2,从而算出x1+x2=4,最后根据抛物线的定义可得弦长|AB|的值.4、A【分析】【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1;4);

故圆心到直线ax+y﹣1=0的距离d==1;

解得:a=-

故选:A.

【分析】求出圆心坐标,代入点到直线距离方程,解得答案.5、B【分析】【解答】至少有两个数字与自身对应的映射;可分为(1)恰有两个数字与自身对应的映射(2)恰有三个数字与自身对应的映射(3)恰有四个数字与自身对应的映射(不存在)(4)恰有五个数字与自身对应的映射。

(1)恰有两个数字与自身对应的映射。

不妨设1,2与自身对应,则3,4,5必须错排,有453,534两种情况,故此类映射共有

(2)恰有三个数字与自身对应的映射。

不妨设1,2,3与自身对应,则4,5必须错排,只有54一种情况,故此类映射共有

(4)恰有五个数字与自身对应的映射。

此类映射只有一种。

所以至少有两个数字与自身对应的映射个数为

故选择B二、填空题(共5题,共10分)6、略

【分析】

∵y′=3x2+

∴函数y=x3+lnx在x=1处的导数为3+1=4

故答案为4.

【解析】【答案】先求原函数的导函数;再把x=1的值代入即可.

7、略

【分析】【解析】【答案】8、略

【分析】【解析】

试题分析:射击一次命中8环或9环的概率为

考点:(1)互斥事件的概率;(2)概率的加法公式.【解析】【答案】0.59、略

【分析】【解析】解:因为则利用几何概型概率公式可知a的区域长度为10,那么概率值为【解析】【答案】10、略

【分析】解:因为长为2的线段MN的一个端点M在棱OA上运动;另一个端点N在△BCO内运动(含边界);

由空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的

即:V==或V=-=-.

故答案为:或-.

由于长为2的线段MN的一个端点M在棱OA上运动;另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.

此题考查了学生的空间想象能力,解答的关键是对球体,三棱锥的体积公式理解与计算能力.【解析】或-三、作图题(共8题,共16分)11、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

12、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.13、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.14、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

15、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.16、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.17、解:画三棱锥可分三步完成。

第一步:画底面﹣﹣画一个三角形;

第二步:确定顶点﹣﹣在底面外任一点;

第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.

画四棱可分三步完成。

第一步:画一个四棱锥;

第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;

第三步:将多余线段擦去.

【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、解答题(共1题,共7分)18、略

【分析】【解析】略【解析】【答案】

解:作出满足不等式组的可行域(如图)................3分。

做直线................4分。

当直线经过点时;

.............7分。

当直线经过点时;

................10分五、计算题(共4题,共40分)19、略

【分析】【分析】作点B关于AC的对称点E,连接EP、EB、EM、EC,则PB+PM=PE+PM,因此EM的长就是PB+PM的最小值.【解析】【解答】解:如图;作点B关于AC的对称点E,连接EP;EB、EM、EC;

则PB+PM=PE+PM;

因此EM的长就是PB+PM的最小值.

从点M作MF⊥BE;垂足为F;

因为BC=2;

所以BM=1,BE=2=2.

因为∠MBF=30°;

所以MF=BM=,BF==,ME==.

所以PB+PM的最小值是.20、略

【分析】由题设得则的概率分布为4分。012P故收益的概率分布为。1.622.4P所以=28分12分【解析】【答案】=221、解:不等式ax2﹣(2a+2)x+4>0;

因式分解得:(ax﹣2)(x﹣2)>0;

若a=0;不等式化为﹣2(x﹣2)>0,则解集为{x|x<2};

若a≠0时,方程(ax﹣2)(x﹣2)=0的两根分别为2;

①若a<0,则<2,此时解集为{x|<x<2};

②若0<a<1,则>2,此时解集为{x|x<2或x>};

③若a=1,则不等式化为(x﹣2)2>0;此时解集为{x|x≠2};

④若a>1,则<2,此时解集为{x|x>2或x<}【分析】【分析】已知不等式左边分解因式后,分a=0与a≠0两种情况求出解集即可.22、解:f(x)=(t4+)|1x=x4+﹣2f(1﹣i)=(1﹣i)4+﹣2=+

f(i)=i4+﹣2=﹣1﹣i

f(1﹣i)f(i)=6+5i【分析】【分析】先根据定积分求出函数f(x)的解析式,然后分别求出f(1﹣i)与f(i)即可求出所求.六、综合题(共3题,共24分)23、略

【分析】【分析】根据OA=OB,得到△AOB是等腰直角三角形,则△NBF也是等腰直角三角形,由于P的纵坐标是b,因而F点的纵坐标是b,即FM=b,则得到AF=b,同理BE=a,根据(a,b)是函数y=的图象上的点,因而b=,ab=,则即可求出AF•BE.【解析】【解答】解:∵P的坐标为(a,);且PN⊥OB,PM⊥OA;

∴N的坐标为(0,);M点的坐标为(a,0);

∴BN=1-;

在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);

∴NF=BN=1-;

∴F点的坐标为(1-,);

∵OM=a;

∴AM=1-a;

∴EM=AM=1-a;

∴E点的坐标为(a;1-a);

∴AF2=(-)2+()2=,BE2=(a)2+(-a)2=2a2;

∴AF•BE=1.

故答案为:1.24、略

【分析】【分析】根据OA=OB,得到△AOB是等腰直角三角形,则△NBF也是等腰直角三角形,由于P的纵坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论