版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题06化学能与电能的转化【考情探究】课标解读内容原电池原理及其应用电解原理及其应用解读理解原电池的构成、工作原理及应用,能书写电极反应和总反应方程式2.了解金属发生电化学腐蚀的原因、金属腐蚀的危害以及防止金属腐蚀的措施3.了解常见化学电源的种类及其工作原理理解电解池的构成、工作原理及应用,能书写电极反应和总反应方程式考情分析电化学是氧化还原反应知识的应用和延伸,是热点考查内容。通常会以新型二次电池为载体考查原电池原理与电解原理。试题难度中等,预计今后对本专题知识的考查会保持稳定。备考策略本专题命题往往以可充电电池的工作原理及电解原理的应用为背景,考查电极反应式的书写、离子移动方向、金属的电化学腐蚀及防护等知识。同时也对信息提取、应用能力进行考查。备考时要侧重原电池与电解池工作原理中基础考点的复习和电极反应式书写技巧的掌握。【高频考点】高频考点一新型电池的工作原理分析1.突破原电池工作原理2.原电池的改进【特别提醒】(1)改进后的优点是电流效率的提高,电流持续稳定。(2)盐析的三个作用①隔绝正负极反应物,避免直接接触,导致电流不稳定;②通过离子的定向移动,构成闭合回路;③平衡电极区的电荷。(3)离子交换膜的作用:离子交换膜是一种选择性透过膜,允许相应离子通过,离子迁移方向遵循电池中离子迁移方向。3.二次电池充电时连接模型(“正”接“正”,“负”接“负”)注意:放电时负极反应与充电时的阴极反应相反,同理放电时正极反应与充电时阳极反应相反。如铅蓄电池:负极:Pb+SOeq\o\al(2-,4)-2e-===PbSO4阴极:PbSO4+2e-===Pb+SOeq\o\al(2-,4)高频考点二电解原理的应用金属腐蚀与防护1.电解池工作原理模型图【特别提醒】①阳离子在阴极上的放电顺序:Ag+>Fe3+>Cu2+>H+>……②阴离子在阳极上的放电顺序:S2->I->Br->Cl->OH->含氧酸根离子>……③当阳极是金属(Au、Pt除外)电极时,溶液中的离子不再放电而是金属失电子生成金属阳离子。④微粒的放电顺序受温度、浓度、电压、电极材料等因素的影响。2.电化学计算的两种常用方法(1)根据电子守恒计算①用于串联电路中阴阳两极产物、正负两极产物、相同电量等类型的计算,其依据是电路中转移的电子数相等。②用于混合溶液中电解的分阶段计算。(2)根据关系式计算根据得失电子守恒定律建立起已知量与未知量之间的桥梁,构建计算所需的关系式。如以通过4mole-为桥梁可构建如下关系式:(式中M为金属,n为其离子的化合价数值)3.金属电化学腐蚀与防护(1)金属腐蚀快慢的三个规律①金属腐蚀类型的差异电解原理引起的腐蚀>原电池原理引起的腐蚀>化学腐蚀>有防护腐蚀措施的腐蚀。②电解质溶液的影响a.对同一金属来说,腐蚀的快慢(浓度相同):强电解质溶液>弱电解质溶液>非电解质溶液。b.对同一种电解质溶液来说,电解质浓度越大,腐蚀越快。③活泼性不同的两金属,活泼性差别越大,腐蚀越快。(2)两种腐蚀与三种保护①两种腐蚀:析氢腐蚀、吸氧腐蚀(关键在于电解液的pH)。②三种保护:电镀保护、牺牲阳极的阴极保护法、外加电流的阴极保护法。高频考点三离子交换膜在电化学中的综合应用1.离子交换膜的作用(1)防止副反应的发生,避免影响所制取产品的质量;防止引发不安全因素(如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的Cl2进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的H2混合发生爆炸)。(2)用于物质的分离、提纯等。(3)用于物质的制备。2.离子交换膜的类型根据透过的微粒,离子交换膜可以分为多种,在高考试题中主要出现过阳离子交换膜、阴离子交换膜和质子交换膜三种。阳离子交换膜只允许阳离子通过,阻止阴离子和气体通过,阴离子交换膜只允许阴离子通过,质子交换膜只允许质子(H+)通过。3.离子交换膜类型的判断根据电解质溶液呈电中性的原则,判断膜的类型:(1)首先写出阴、阳两极上的电极反应,依据电极反应式确定该电极附近哪种离子剩余。(2)根据溶液呈电中性,判断出离子移动的方向,从而确定离子交换膜的类型。4.定量关系外电路电子转移数=通过隔膜的阴、阳离子带的负或正电荷数。【题型突破】题型一考查二次电池例1.(2020·天津卷)熔融钠-硫电池性能优良,是具有应用前景的储能电池。下图中的电池反应为(x=5~3,难溶于熔融硫),下列说法错误的是()A.Na2S4的电子式为B.放电时正极反应为C.Na和Na2Sx分别为电池的负极和正极D.该电池是以为隔膜的二次电池【答案】C【解析】根据电池反应:可知,放电时,钠作负极,发生氧化反应,电极反应为:Na-e-=Na+,硫作正极,发生还原反应,电极反应为,据此分析。Na2S4属于离子化合物,4个硫原子间形成三对共用电子对,电子式为,故A正确;放电时发生的是原电池反应,正极发生还原反应,电极反应为:,故B正确;放电时,Na为电池的负极,正极为硫单质,故C错误;放电时,该电池是以钠作负极,硫作正极的原电池,充电时,是电解池,为隔膜,起到电解质溶液的作用,该电池为二次电池,故D正确;答案选C。【方法技巧】(1)放电时,正、负极的判断。(2)充、放电时两极反应式书写判断。(3)充、放电时,电子、离子的移动方向。(4)电极附近溶液性质的变化。(5)充、放电两极反应类型判断。(6)充电连接判断。(7)基本电化学计算。【变式探究】(2019·全国卷Ⅲ)为提升电池循环效率和稳定性,科学家近期利用三维多孔海绵状Zn(3DZn)可以高效沉积ZnO的特点,设计了采用强碱性电解质的3DZn—NiOOH二次电池,结构如图所示。电池反应为Zn(s)+2NiOOH(s)+H2O(l)ZnO(s)+2Ni(OH)2(s)。下列说法错误的是()A.三维多孔海绵状Zn具有较高的表面积,所沉积的ZnO分散度高B.充电时阳极反应为Ni(OH)2(s)+OH-(aq)-e-===NiOOH(s)+H2O(l)C.放电时负极反应为Zn(s)+2OH-(aq)-2e-===ZnO(s)+H2O(l)D.放电过程中OH-通过隔膜从负极区移向正极区【答案】D【解析】A项,三维多孔海绵状Zn为多孔结构,具有较高的表面积,所沉积的ZnO分散度高,正确;B项,二次电池充电时作为电解池使用,阳极发生氧化反应,元素化合价升高,原子失去电子,阳极反应为Ni(OH)2(s)+OH-(aq)-e-===NiOOH(s)+H2O(l),正确;C项,二次电池放电时作为原电池使用,负极发生氧化反应,元素化合价升高,原子失去电子,由电池总反应可知负极反应为Zn(s)+2OH-(aq)-2e-===ZnO(s)+H2O(l),正确;D项,二次电池放电时作为原电池使用,阴离子从正极区向负极区移动,错误。题型二考查新型电池例2.(2020·新课标Ⅲ)一种高性能的碱性硼化钒(VB2)—空气电池如下图所示,其中在VB2电极发生反应:该电池工作时,下列说法错误的是()A.负载通过0.04mol电子时,有0.224L(标准状况)O2参与反应B.正极区溶液的pH降低、负极区溶液的pH升高C.电池总反应为D.电流由复合碳电极经负载、VB2电极、KOH溶液回到复合碳电极【答案】B【解析】根据图示的电池结构,左侧VB2发生失电子的反应生成和,反应的电极方程式如题干所示,右侧空气中的氧气发生得电子的反应生成OH-,反应的电极方程式为O2+4e-+2H2O=4OH-,电池的总反应方程式为4VB2+11O2+20OH-+6H2O=8+4,据此分析。当负极通过0.04mol电子时,正极也通过0.04mol电子,根据正极的电极方程式,通过0.04mol电子消耗0.01mol氧气,在标况下为0.224L,A正确;反应过程中正极生成大量的OH-使正极区pH升高,负极消耗OH-使负极区OH-浓度减小pH降低,B错误;根据分析,电池的总反应为4VB2+11O2+20OH-+6H2O=8+4,C正确;电池中,电子由VB2电极经负载流向复合碳电极,电流流向与电子流向相反,则电流流向为复合碳电极→负载→VB2电极→KOH溶液→复合碳电极,D正确。【变式探究】(2018·全国卷Ⅲ)一种可充电锂-空气电池如图所示。当电池放电时,O2与Li+在多孔碳材料电极处生成Li2O2-x(x=0或1)。下列说法正确的是()A.放电时,多孔碳材料电极为负极B.放电时,外电路电子由多孔碳材料电极流向锂电极C.充电时,电解质溶液中Li+向多孔碳材料区迁移D.充电时,电池总反应为Li2O2-x=2Li+(1-x2)O【答案】D【解析】放电时,O2与Li+在多孔碳电极处反应,说明电池内,Li+向多孔碳电极移动,因为阳离子移向正极,所以多孔碳电极为正极,A错误。因为多孔碳电极为正极,外电路电子应该由锂电极流向多孔碳电极(由负极流向正极),B错误。充电和放电时电池中离子的移动方向应该相反,放电时,Li+向多孔碳电极移动,充电时向锂电极移动,C错误。根据图示和上述分析,电池的正极反应应该是O2与Li+得电子转化为Li2O2-X,电池的负极反应应该是单质Li失电子转化为Li+,所以总反应为:2Li+(1-x2)O2=Li2O2-X,充电的反应与放电的反应相反,所以为Li2O2-X=2Li+(1-x2)O2题型三考查电解原理及其应用例3.(2020·浙江卷)电解高浓度(羧酸钠)的溶液,在阳极放电可得到(烷烃)。下列说法不正确的是()A.电解总反应方程式:B.在阳极放电,发生氧化反应C.阴极的电极反应:D.电解、和混合溶液可得到乙烷、丙烷和丁烷【答案】A【解析】因为阳极RCOO-放电可得到R-R(烷烃)和产生CO2,在强碱性环境中,CO2会与OH-反应生成CO32-和H2O,故阳极的电极反应式为2RCOO--2e-+4OH-=R-R+2CO32-+2H2O,阴极上H2O电离产生的H+放电生成H2,同时生成OH-,阴极的电极反应式为2H2O+2e-=2OH-+H2↑,因而电解总反应方程式为2RCOONa+2NaOHeq\o(=,\s\up8(通电))R-R+2Na2CO3+H2↑,故A错误;RCOO-在阳极放电,电极反应式为2RCOO--2e-+4OH-=R-R+2CO32-+2H2O,-COO-中碳元素的化合价由+3价升高为+4价,发生氧化反应,烃基-R中元素的化合价没有发生变化,故B正确;阴极上H2O电离产生的H+放电生成H2,同时生成OH-,阴极的电极反应为2H2O+2e-=2OH-+H2↑,故C正确;根据题中信息,由上述电解总反应方程式可以确定下列反应能够发生:2CH3COONa+2NaOHeq\o(=,\s\up8(通电))CH3-CH3+2Na2CO3+H2↑,2CH3CH2COONa+2NaOHeq\o(=,\s\up8(通电))CH3CH2-CH2CH3+2Na2CO3+H2↑,CH3COONa+CH3CH2COONa+2NaOHeq\o(=,\s\up8(通电))CH3-CH2CH3+2Na2CO3+H2↑。因此,电解CH3COONa、CH3CH2COONa和NaOH的混合溶液可得到乙烷、丙烷和丁烷,D正确。【举一反三】(2020·江苏卷)将金属M连接在钢铁设施表面,可减缓水体中钢铁设施的腐蚀。在题图所示的情境中,下列有关说法正确的是A.阴极的电极反应式为B.金属M的活动性比Fe的活动性弱C.钢铁设施表面因积累大量电子而被保护D.钢铁设施在河水中的腐蚀速率比在海水中的快【答案】C【解析】该装置为原电池原理的金属防护措施,为牺牲阳极的阴极保护法,金属M作负极,钢铁设备作正极,据此分析解答。阴极的钢铁设施实际作原电池的正极,正极金属被保护不失电子,故A错误;阳极金属M实际为原电池装置的负极,电子流出,原电池中负极金属比正极活泼,因此M活动性比Fe的活动性强,故B错误;金属M失电子,电子经导线流入钢铁设备,从而使钢铁设施表面积累大量电子,自身金属不再失电子从而被保护,故C正确;海水中的离子浓度大于河水中的离子浓度,离子浓度越大,溶液的导电性越强,因此钢铁设施在海水中的腐蚀速率比在河水中快,故D错误;故选C。【变式探究】[2019·江苏卷]将铁粉和活性炭的混合物用NaCl溶液湿润后,置于如图所示装置中,进行铁的电化学腐蚀实验。下列有关该实验的说法正确的是A.铁被氧化的电极反应式为Fe−3e−===Fe3+B.铁腐蚀过程中化学能全部转化为电能C.活性炭的存在会加速铁的腐蚀D.以水代替NaCl溶液,铁不能发生吸氧腐蚀【答案】C【解析】在铁的电化学腐蚀中,铁单质失去电子转化为二价铁离子,即负极反应为:Fe−2e−=Fe2+,故A错误;铁的腐蚀过程中化学能除了转化为电能,还有一部分转化为热能,故B错误;活性炭与铁混合,在氯化钠溶液中构成了许多微小的原电池,加速了铁的腐蚀,故C正确;以水代替氯化钠溶液,水也呈中性,铁在中性或碱性条件下易发生吸氧腐蚀,故D错误。题型四考查膜电池综合应用例4.(2020·山东卷)微生物脱盐电池是一种高效、经济的能源装置,利用微生物处理有机废水获得电能,同时可实现海水淡化。现以NaCl溶液模拟海水,采用惰性电极,用下图装置处理有机废水(以含CH3COO-的溶液为例)。下列说法错误的是A.负极反应为B.隔膜1为阳离子交换膜,隔膜2为阴离子交换膜C.当电路中转移1mol电子时,模拟海水理论上除盐58.5gD.电池工作一段时间后,正、负极产生气体的物质的量之比为2:1【答案】B【解析】据图可知a极上CH3COOˉ转化为CO2和H+,C元素被氧化,所以a极为该原电池的负极,则b极为正极。a极为负极,CH3COOˉ失电子被氧化成CO2和H+,结合电荷守恒可得电极反应式为CH3COOˉ+2H2O-8eˉ=2CO2↑+7H+,故A正确;为了实现海水的淡化,模拟海水中的氯离子需要移向负极,即a极,则隔膜1为阴离子交换膜,钠离子需要移向正极,即b极,则隔膜2为阳离子交换膜,故B错误;当电路中转移1mol电子时,根据电荷守恒可知,海水中会有1molClˉ移向负极,同时有1molNa+移向正极,即除去1molNaCl,质量为58.5g,故C正确;b极为正极,水溶液为酸性,所以氢离子得电子产生氢气,电极反应式为2H++2eˉ=H2↑,所以当转移8mol电子时,正极产生4mol气体,根据负极反应式可知负极产生2mol气体,物质的量之比为4:2=2:1,故D正确;故答案为B。【变式探究】(2020·新课标Ⅰ)科学家近年发明了一种新型Zn−CO2水介质电池。电池示意图如图,电极为金属锌和选择性催化材料,放电时,温室气体CO2被转化为储氢物质甲酸等,为解决环境和能源问题提供了一种新途径。下列说法错误的是()A.放电时,负极反应为B.放电时,1molCO2转化为HCOOH,转移的电子数为2molC.充电时,电池总反应为D.充电时,正极溶液中OH−浓度升高【答案】D【解析】由题可知,放电时,CO2转化为HCOOH,即CO2发生还原反应,故放电时右侧电极为正极,左侧电极为负极,Zn发生氧化反应生成;充电时,右侧为阳极,H2O发生氧化反应生成O2,左侧为阴极,发生还原反应生成Zn,以此分析解答。放电时,负极上Zn发生氧化反应,电极反应式为:,故A正确;放电时,CO2转化为HCOOH,C元素化合价降低2,则1molCO2转化为HCOOH时,转移电子数为2mol,故B正确;充电时,阳极上H2O转化为O2,负极上转化为Zn,电池总反应为:,故C正确;充电时,正极即为阳极,电极反应式为:,溶液中H+浓度增大,溶液中c(H+)•c(OH-)=KW,温度不变时,KW不变,因此溶液中OH-浓度降低,故D错误。【变式探究】(2019·全国卷Ⅰ)利用生物燃料电池原理研究室温下氨的合成,电池工作时MV2+/MV+在电极与酶之间传递电子,示意图如下所示。下列说法错误的是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版智慧城市建设项目投资入股协议书范本3篇
- 2025年度工钱垫付与劳动保障政策执行协议范本2篇
- 2025版国际能源合作习协议书3篇
- 2025版小麦种子进出口贸易合同样本3篇
- 2025年度个人房屋买卖绿色环保协议3篇
- 2025-2030全球一次性使用2D储液袋行业调研及趋势分析报告
- 2025年全球及中国湿式无线远传智能水表行业头部企业市场占有率及排名调研报告
- 2024年秋季江苏七年级入学分班考试语文模拟卷2(解析版)
- 2024年煤矿安全生产知识竞赛题库及答案(共80题)
- 2025版新能源汽车租赁与保险代理服务合同3篇
- 2024版塑料购销合同范本买卖
- 2024-2025学年人教新版高二(上)英语寒假作业(五)
- YY/T 1496-2016红光治疗设备
- 郑州小吃详细地点
- 上海高考英语词汇手册
- 2021年江苏省淮安市淮阴中学高一政治下学期期末试题含解析
- 2021年道路交通安全法期末考试试题含答案
- 自带药物治疗告知书
- 建筑制图与阴影透视-第3版-课件12
- 2023年最新的校长给教师春节祝福语
- 吞咽解剖和生理研究
评论
0/150
提交评论