版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页2025届高考数学第一轮专项复习—圆锥曲线中的仿射变换、非对称韦达、光学性质问题目录TOC\o"1-2"\h\z\u01方法技巧与总结 202题型归纳与总结 6题型一:仿射变换问题 6题型二:非对称韦达问题 8题型三:椭圆的光学性质 10题型四:双曲线的光学性质 12题型五:抛物线的光学性质 1403过关测试 16
一、仿射变换问题仿射变换有如下性质:1、同素性:在经过变换之后,点仍然是点,线仍然是线;2、结合性:在经过变换之后,在直线上的点仍然在直线上;3、其它不变关系.我们以椭圆为例阐述上述性质.椭圆,经过仿射变换,则椭圆变为了圆,并且变换过程有如下对应关系:(1)点变为;(2)直线斜率变为,对应直线的斜率比不变;(3)图形面积变为,对应图形面积比不变;(4)点、线、面位置不变(平⾏直线还是平⾏直线,相交直线还是相交直线,中点依然是中点,相切依然是相切等);(5)弦长关系满足,因此同一条直线上线段比值不变,三点共线的比不变总结可得下表:变换前变换后方程横坐标纵坐标斜率面积弦长不变量平行关系;共线线段比例关系;点分线段的比二、非对称韦达问题在一元二次方程中,若,设它的两个根分别为,则有根与系数关系:,借此我们往往能够利用韦达定理来快速处理之类的结构,但在有些问题时,我们会遇到涉及的不同系数的代数式的应算,比如求或之类的结构,就相对较难地转化到应用韦达定理来处理了.特别是在圆锥曲线问题中,我们联立直线和圆锥曲线方程,消去或,也得到一个一元二次方程,我们就会面临着同样的困难,我们把这种形如或之类中的系数不对等的情况,这些式子是非对称结构,称为“非对称韦达”.三、光学性质问题1、椭圆的光学性质从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点(如图1).【引理1】若点在直线的同侧,设点是直线上到两点距离之和最小的点,当且仅当点是点关于直线的对称点与点连线和直线的交点.【引理2】若点在直线的两侧,且点到直线的距离不相等,设点是直线上到点距离之差最大的点,即最大,当且仅当点是点关于直线的对称点与点连线的延长线和直线的交点.【引理3】设椭圆方程为,分别是其左、右焦点,若点在椭圆外,则.2、双曲线的光学性质从双曲线的一个焦点发出的光从双曲线的一个焦点发出的光线经过双曲线的另一个焦点(如图).【引理4】若点在直线的同侧,设点是直线上到两点距离之和最小的点,当且仅当点是点关于直线的对称点与点连线和直线的交点.【引理5】若点在直线的两侧,且点到直线的距离不相等,设点是直线上到点距离之差最大的点,即最大,当且仅当点是点关于直线的对称点与点连线的延长线和直线的交点.【引理6】设双曲线方程为,分别是其左、右焦点,若点在双曲线外(左、右两支中间部分,如图),则.3、抛物线的光学性质从抛物线的焦点发出的光线,经过抛物线上的一点反射后,反射光线与抛物线的轴平行(或重合).反之,平行于抛物线的轴的光线照射到抛物线上,经反射后都通过焦点.【结论1】已知:如图,抛物线,为其焦点,是过抛物线上一点的切线,是直线上的两点(不同于点),直线平行于轴.求证:.(入射角等于反射角)【结论2】已知:如图,抛物线,是抛物线的焦点,入射光线从点发出射到抛物线上的点,求证:反射光线平行于轴.题型一:仿射变换问题【典例1-1】如图,作斜率为的直线与椭圆交于两点,且在直线的上方,则△内切圆的圆心所在的定直线方程为.【典例1-2】Р是椭圆上任意一点,O为坐标原点,,过点Q的直线交椭圆于A,B两点,并且,则面积为.【变式1-1】已知椭圆的标准方程为.(1)设动点满足:,其中,是椭圆上的点,直线与的斜率之积为,问:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.(2)设动点满足:,其中,是椭圆上的点,直线与的斜率之积为,问:是否存在点,使得点到的距离与到直线的距离之比为定值?若存在,求的坐标;若不存在,说明理由.【变式1-2】已知椭圆C:x2a2+y2b2=1a>b>0经过点,其离心率为,设,,是椭圆(1)求椭圆的标准方程;(2)证明:的面积是一个常数.【变式1-3】对于椭圆,令,,那么在坐标系中,椭圆经伸缩变换得到了单位圆,在这样的伸缩变换中,有些几何关系保持不变,例如点、直线、曲线的位置关系以及点分线段的比等等;而有些几何量则等比例变化,例如任何封闭图形在变换后的面积变为原先的,由此我们可以借助圆的几何性质处理一些椭圆的问题.(1)在原坐标系中斜率为k的直线l,经过,的伸缩变换后斜率变为,求k与满足的关系;(2)设动点P在椭圆上,过点P作椭圆的切线,与椭圆交于点Q,R,再过点Q,R分别作椭圆的切线交于点S,求点S的轨迹方程;(3)点)在椭圆上,求椭圆上点B,C的坐标,使得△ABC的面积取最大值,并求出该最大值.【变式1-4】在平面直角坐标系xOy中,若在曲线的方程中,以(为非零的正实数)代替得到曲线的方程,则称曲线关于原点“伸缩”,变换称为“伸缩变换”,称为伸缩比.(1)已知曲线的方程为,伸缩比,求关于原点“伸缩变换”后所得曲线的方程;(2)射线的方程,如果椭圆经“伸缩变换”后得到椭圆,若射线与椭圆分别交于两点A、B,且,求椭圆的方程;(3)对抛物线,作变换,得抛物线;对作变换,得抛物线;如此进行下去,对抛物线作变换,得抛物线,…若,,求数列的通项公式.题型二:非对称韦达问题【典例2-1】(2024·湖北宜昌·二模)已知、分别是离心率的椭圆的左右顶点,P是椭圆E的上顶点,且.(1)求椭圆E的方程;(2)若动直线过点,且与椭圆E交于A、B两点,点M与点B关于y轴对称,求证:直线恒过定点.【典例2-2】已知、分别是椭圆的右顶点和上顶点,、在椭圆上,且,设直线、的斜率分别为、,证明:为定值.【变式2-1】已知椭圆:()的左右焦点分别为,,分别为左右顶点,直线:与椭圆交于两点,当时,是椭圆的上顶点,且的周长为.(1)求椭圆的方程;(2)设直线交于点,证明:点在定直线上.(3)设直线的斜率分别为,证明:为定值.【变式2-2】(2024·河南新乡·三模)已知分别是椭圆的左、右焦点,P是椭圆C上的一点,当PF1⊥F1F2时,|PF2|=2|PF1|.(1)求椭圆C的标准方程:(2)过点Q(﹣4,0)的直线l与椭圆C交于M,N两点,点M关于x轴的对称点为点M′,证明:直线NM′过定点.【变式2-3】已知椭圆过点,且.(Ⅰ)求椭圆C的方程:(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.【变式2-4】(2024·湖北·一模)如图,为坐标原点,椭圆()的焦距等于其长半轴长,为椭圆的上、下顶点,且(1)求椭圆的方程;(2)过点作直线交椭圆于异于的两点,直线交于点.求证:点的纵坐标为定值3.题型三:椭圆的光学性质【典例3-1】欧几里德生活的时期,人们就发现椭圆有如下的光学性质:从椭圆的一个焦点射出的光线,经椭圆内壁反射后必经过该椭圆的另一焦点.现有椭圆,长轴长为,从的左焦点发出的一条光线,经内壁上一点反射后恰好与轴垂直,且.(1)求的方程;(2)设点,若斜率不为0的直线与交于点均异于点,且在以MN为直径的圆上,求到距离的最大值.【典例3-2】阿波罗尼斯在对圆锥曲线的研究过程中,还进一步研究了圆锥曲线的光学性质,例如椭圆的光学性质:(如图1)从椭圆一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上.在对该性质证明的过程中(如图2),他还特别用到了“角平分线性质定理”:,从而得到,而性质得证根据上述材料回答以下问题(1)如图3,已知椭圆C:x2a2+y2b2=1a>b>0的左右焦点分别为,一束光线从F1−1,0射出,经椭圆上点反射:处法线(与椭圆在处切线垂直的直线)与(2)已知椭圆,长轴长为,焦距为,若一条光线从左焦点射出,经过椭圆上点若干次反射,第一次回到左焦点所经过的路程为,求椭圆的离心率(3)对于抛物线,猜想并证明其光线性质.【变式3-1】(2024·高三·安徽池州·期末)已知椭圆具有如下光学性质:从椭圆的一个焦点发出的光线射向椭圆上任一点,经椭圆反射后必经过另一个焦点.若从椭圆的左焦点发出的光线,经过两次反射之后回到点,光线经过的路程为8,椭圆C的离心率为.(1)求椭圆C的标准方程;(2)如图,若椭圆C的右顶点为A,上顶点为B,动直线l交椭圆C于P、Q两点,且始终满足,作交于点M,求的最大值.【变式3-2】(2024·全国·模拟预测)已知椭圆具有如下光学性质:从椭圆的一个焦点发出的光线射向椭圆上任一点,经椭圆反射后必经过另一个焦点.若从椭圆的左焦点发出的光线,经过两次反射之后回到点,光线经过的路程为8,T的离心率为.(1)求椭圆T的标准方程;(2)设,且,过点D的直线l与椭圆T交于不同的两点M,N,是T的右焦点,且与互补,求面积的最大值.题型四:双曲线的光学性质【典例4-1】双曲线在物理学中有很多应用,比如波的干涉图样为双曲线、反射式天文望远镜利用了其光学性质等等.(1)已知A、B是在直线l两侧且到直线l的距离不相等的两点,P为直线l上一点.试探究当点P的位置满足什么条件时,取最大值;(2)若光线在平滑曲线上发生反射时,入射光线与反射光线关于曲线在入射点处的切线在该点处的垂线对称.证明:由双曲线的一个焦点射出的光线,在双曲线上发生反射后,反射光线的反向延长线交于双曲线的另一个焦点.【典例4-2】(2024·辽宁丹东·一模)我们所学过的椭圆、双曲线、抛物线这些圆锥曲线,都有令人惊奇的光学性质,且这些光学性质都与它们的焦点有关.如从双曲线的一个焦点处出发的光线照射到双曲线上,经反射后光线的反向延长线会经过双曲线的另一个焦点(如图所示,其中是反射镜面也是过点处的切线).已知双曲线的左右焦点分别为,,从处出发的光线照射到双曲线右支上的点P处(点P在第一象限),经双曲线反射后过点.
(1)请根据双曲线的光学性质,解决下列问题:当,,且直线的倾斜角为时,求反射光线所在的直线方程;(2)从处出发的光线照射到双曲线右支上的点处,且三点共线,经双曲线反射后过点,,,延长,分别交两条渐近线于,点是的中点,求证:为定值.(3)在(2)的条件下,延长交y轴于点,当四边形的面积为8时,求的方程.【变式4-1】(2024·安徽安庆·一模)如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线的左、右焦点分别为、,从发出的光线经过图2中的、两点反射后,分别经过点和,且,.
(1)求双曲线的方程;(2)设、为双曲线实轴的左、右顶点,若过的直线与双曲线交于、两点,试探究直线与直线的交点是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.【变式4-2】郑州中原福塔的外立面呈双曲抛物面状,造型优美,空中俯瞰犹如盛开的梅花绽放在中原大地,是现代建筑与艺术的完美结合.双曲抛物面又称马鞍面,其在笛卡尔坐标系中的方程与在平面直角坐标系中的双曲线方程类似.双曲线在物理学中具有很多应用,比如波的干涉图样为双曲线、反射式天文望远镜利用了其光学性质等等.(1)已知,是在直线两侧且到直线距离不相等的两点,为直线上一点.试探究当点的位置满足什么条件时,取最大值;(2)若光线在平滑曲线上发生反射时,入射光线与反射光线关于曲线在入射点处的切线在该点处的垂线对称.证明:由双曲线一个焦点射出的光线,在双曲线上发生反射后,反射光线的反向延长线交于双曲线的另一个焦点.题型五:抛物线的光学性质【典例5-1】抛物线具有光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知点为抛物线的焦点,为坐标原点,点在抛物线上,且其纵坐标为,满足.(1)求抛物线的标准方程;(2)已知平行于轴的光线从点射入,经过抛物线上的点反射后,再经过抛物线上另一点,最后沿方向射出,若射线平分,求实数的值.【典例5-2】抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,反之,平行于抛物线对称轴的入射光线经抛物线反射后反射光线或其反向延长线必过抛物线的焦点.已知抛物线,O为坐标原点.一束平行于x轴的光线从点射入,经过C上的点反射后,再经C上另一点反射后,沿直线射出,经过点.(1)求证:;(2)若PB平分,求点B到直线QP的距离.【变式5-1】抛物线具有如下光学性质:由其焦点发出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.如图,已知抛物线的焦点为,为坐标原点.一条平行于轴的光线从上方射向抛物线,经抛物线上,两点反射后,又沿平行于轴的方向射出,且两平行光线间的最小距离为.(1)求抛物线的方程;(2)过向抛物线的准线作垂线,垂足为,证明:,,三点共线.【变式5-2】(2024·高三·青海西宁·开学考试)根据抛物线的光学性质可知,从抛物线的焦点发出的光线经该抛物线反射后与对称轴平行.已知抛物线C:,如图,点F为C的焦点,过F的光线经拋物线反射后分别过点,.
(1)求C的方程;(2)设点,若过点的直线与C交于R,T两点,求面积的最小值.1.(2024·江苏扬州·模拟预测)双曲线具有光学性质,从双曲线一个焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的另一个焦点.若双曲线E:的左、右焦点分别为,,从发出的光线经过图中的A,B两点反射后,分别经过点C和D,且,,则E的离心率为(
)
A. B. C. D.2.抛物线有如下光学性质:过焦点的光线经拋物线反射之后得到的光线平行于抛物线的对称轴:反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过拋物线上的点反射后,再经抛物线上的另一点射出,则的周长为(
)A. B. C. D.3.(2024·高三·江西·期末)阿波罗尼斯(约公元前262年~约公元前190年),古希腊著名数学家﹐主要著作有《圆锥曲线论》、《论切触》等.尤其《圆锥曲线论》是一部经典巨著,代表了希腊几何的最高水平,此书集前人之大成,进一步提出了许多新的性质.其中也包括圆锥曲线的光学性质,光线从双曲线的一个焦点发出,通过双曲线的反射,反射光线的反向延长线经过其另一个焦点.已知双曲线C:的左、右焦点分别为,,其离心率,从发出的光线经过双曲线C的右支上一点E的反射,反射光线为EP,若反射光线与入射光线垂直,则(
)A. B. C. D.4.椭圆具有如下光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线过椭圆的另一个焦点(如图).已知椭圆的左、右焦点分别为,过点的直线与交于点,,过点作的切线,点关于的对称点为,若,,则(
)注:表示面积.A.2 B. C.3 D.5.(多选题)(2024·江苏常州·二模)双曲线具有光学性质:从双曲线一个焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的另一个焦点.如图,双曲线的左、右焦点分别为,从发出的两条光线经过的右支上的两点反射后,分别经过点和,其中共线,则(
)A.若直线的斜率存在,则的取值范围为B.当点的坐标为时,光线由经过点到达点所经过的路程为6C.当时,的面积为12D.当时,6.过椭圆的右焦点F的直线与椭圆交于A,B两点,则面积最大值为.7.已知椭圆左顶点为,为椭圆上两动点,直线交于,直线交于,直线的斜率分别为且,(是非零实数),求.8.椭圆的光学性质,从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上.已知椭圆C:,为其左、右焦点.是上的动点,点,若的最大值为6,动直线为此椭圆的切线,右焦点关于直线的对称点,则椭圆的离心率为;的取值范围为.9.如图甲,从椭圆的一个焦点出发的光线或声波,经椭圆反射后,反射光线经过椭圆的另一个焦点,其中法线表示与椭圆C的切线垂直且过相应切点的直线,如图乙,椭圆C的中心在坐标原点,焦点为F1−c,0,,由发出的光经椭圆两次反射后回到经过的路程为8c.利用椭圆的光学性质解决以下问题:椭圆C的离心率为;点P是椭圆C上除顶点外的任意一点,椭圆在点P处的切线为l,在l上的射影H在圆上,则椭圆C的方程为.10.如图所示,由圆锥曲线的光学性质知道:从椭圆的一个焦点出发的光线,经椭圆反射(即经椭圆在该点处的切线反射)后,反射光线经过椭圆的另一个焦点.已知椭圆C的方程为,其左、右焦点分别是,,直线l与椭圆C相切于点,过点P且与直线垂直的直线与椭圆长轴交于点M,则.
11.圆锥曲线因其特殊的形状而存在着特殊的光学性质.我们知道,抛物线的光学性质是平行于抛物线对称轴的光线经抛物线反射后汇聚于其焦点;双曲线的光学性质是从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上.卡式望远镜就是应用这些性质设计的.下图为卡式望远镜的中心截面示意图,其主要由两块反射镜组成,主镜是中央开孔的凹抛物面镜,副镜是双曲线左支的旋转面型凸双曲面镜,主镜对应抛物线的顶点与副镜对应双曲线的中心重合,当平行光线投射到主镜上时,经过主镜反射,将汇聚到主镜的焦点处,但光线尚未汇聚时,又受到以为焦点的凸双曲面镜的反射,穿过主镜中心的开孔后汇聚于另一个焦点处.以的中点为原点,为轴,建立平面直角坐标系.若米,凹抛物面镜的口径为米,凸双曲面镜的口径为1米,要使副镜的反射光线全部通过凹抛物面镜的中央孔洞,则孔洞直径最小为米.12.点是椭圆的左右顶点,若过定点且斜率不为0的直线与椭圆交于M,N两点,求证:直线AM与直线的交点在一条定直线上.13.如图,椭圆有两顶点,,过其焦点F0,1的直线l与椭圆交于C,D两点,并与x轴交于点P,且直线l的斜率大于1,直线AC与直线BD交于点Q.
(1)求椭圆的方程;(2)求证:为定值.14.如图,已知是长轴为的椭圆上的三点,点是长轴的右顶点,过椭圆中心,且,.
(1)求椭圆的标准方程;(2)若过关于轴对称的点作椭圆的切线,则与有什么位置关系?证明你的结论.15.如图,已知椭圆:,直线:与圆:相切且与椭圆交于A,B两点.
(1)若线段AB中点的横坐标为,求m的值;(2)过原点O作的平行线交椭圆于C,D两点,设,求的最小值.16.(2024·安徽合肥·一模)已知曲线C:,从曲线C上的任意点作压缩变换得到点.(1)求点所在的曲线E的方程;(2)设过点的直线交曲线E于A,B两点,试判断以AB为直径的圆与直线的位置关系,并写出分析过程.17.设为坐标原点,椭圆:经过升缩变换后变为曲线,是曲线上的点.(1)求曲线的方程.(2)设点在直线上,且.证明:过点且垂直于的直线过的左焦点.18.生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点现椭圆C的焦点在x轴上,中心在坐标原点,从左焦点射出的光线经过椭圆镜面反射到右焦点,这束光线的总长度为4,且椭圆的离心率为,左顶点和上顶点分别为A、B.(1)求椭圆C的方程;(2)点P在椭圆上,求线段的长度的最大值及取最大值时点P的坐标;(3)不过点A的直线l交椭圆C于M,N两点,记直线l,的斜率分别为,若,证明:直线l过定点,并求出定点的坐标.19.如图,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.已知椭圆:的左、右焦点分别为,,左、右顶点分别为,,一光线从点F1−1,0射出经椭圆上点反射,法线(与椭圆在处的切线垂直的直线)与轴交于点,已知,.求椭圆的方程.20.历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年——325年),大约100年后,阿波罗尼斯更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质:如图甲,从椭圆的一个焦点出发的光线或声波,经椭圆反射后,反射光线经过椭圆的另一个焦点,其中法线表示与椭圆的切线垂直且过相应切点的直线.已知图乙中,椭圆的中心在坐标原点,焦点为,由发出的光线经椭圆两次反射后回到经过的路程为.(1)点是椭圆上除顶点外的任意一点,椭圆在点处的切线为在上的射影满足,利用椭圆的光学性质求椭圆的方程;(2)在:(1)的条件下,设椭圆上顶点为,点为轴上不同于椭圆顶点的点,且,直线分别与椭圆交于点(异于点),,垂足为,求的最小值.21.已知点为椭圆:()内一点,过点的直线与交于两点.当直线经过的右焦点时,点恰好为线段的中点.(1)求椭圆的方程;(2)椭圆的光学性质是指:从椭圆的一个焦点出发的一束光线经椭圆反射后会经过椭圆的另一个焦点.设从椭圆的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度美容设备研发成果转化采购合同4篇
- 二零二五年度租赁车辆租赁期限及费用调整协议3篇
- 二零二五版离婚协议书:女性权益优先考虑范本
- 二零二五版临时租用水利设施用地租赁合同4篇
- 2025年度工业厂房出售与产业园区配套服务合同4篇
- 二零二五年度报纸合作发行与营销协议3篇
- 2025年校园设施升级-化粪池清掏与管道改造服务合同3篇
- 家用器具生产过程中的能源管理考核试卷
- 2025年度个人教育贷款还款合同样本4篇
- 塑料制品的岗位安全与职业健康考核试卷
- 家庭年度盘点模板
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
- 2024年资格考试-WSET二级认证考试近5年真题集锦(频考类试题)带答案
- 试卷中国电子学会青少年软件编程等级考试标准python三级练习
- 公益慈善机构数字化转型行业三年发展洞察报告
- 饲料厂现场管理类隐患排查治理清单
- 【名著阅读】《红岩》30题(附答案解析)
- Starter Unit 2 同步练习人教版2024七年级英语上册
- 分数的加法、减法、乘法和除法运算规律
- 2024年江苏鑫财国有资产运营有限公司招聘笔试冲刺题(带答案解析)
- 2024年辽宁石化职业技术学院单招职业适应性测试题库含答案
评论
0/150
提交评论