下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页渤海船舶职业学院《三维设计基础》
2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的图像增强任务中,假设要提高一张低光照图像的质量。以下关于图像增强方法的描述,正确的是:()A.直方图均衡化能够均匀分布图像的灰度级,但可能会导致细节丢失B.基于滤波的方法可以有效地去除噪声,但同时也会模糊图像的边缘C.伽马校正只适用于校正过亮的图像,对于低光照图像效果不佳D.所有的图像增强方法都能够在不引入任何失真的情况下提高图像质量2、在计算机视觉的目标跟踪任务中,目标可能会被遮挡、变形或快速移动。假设要跟踪一个在人群中快速移动的人物,以下哪种跟踪算法可能更适合应对这种复杂情况?()A.基于卡尔曼滤波的跟踪算法B.基于粒子滤波的跟踪算法C.基于均值漂移的跟踪算法D.基于模板匹配的跟踪算法3、在一个基于计算机视觉的无人驾驶系统中,需要对道路场景进行理解和预测,例如判断前方是否有行人横穿马路。为了实现准确的场景理解和预测,以下哪种技术可能是关键?()A.语义分割B.实例分割C.场景图生成D.以上都是4、在计算机视觉中,三维重建是从二维图像恢复物体的三维结构。以下关于三维重建的叙述,不正确的是()A.可以通过多视图几何、结构光或深度学习方法进行三维重建B.三维重建在虚拟现实、文物保护和工业设计等领域有着广泛的应用C.三维重建的结果总是精确无误的,能够完全还原物体的真实三维结构D.噪声、遮挡和图像质量等因素会对三维重建的结果产生影响5、图像分类是计算机视觉的基础任务之一。假设要对一组动物图片进行分类,区分猫、狗、兔子等。以下关于图像分类方法的描述,哪一项是不准确的?()A.传统的机器学习方法,如支持向量机(SVM),也可以用于图像分类任务B.深度学习中的卷积神经网络(CNN)在图像分类中取得了显著的效果C.图像分类只需要考虑图像的内容,不需要考虑图像的拍摄角度和背景等因素D.可以通过数据增强技术,如旋转、裁剪、翻转等,增加训练数据的多样性6、计算机视觉中的手势识别用于理解人的手势动作。假设要在一个智能交互系统中实现实时准确的手势识别,以下关于手势识别方法的描述,正确的是:()A.基于传感器的手势识别方法能够精确获取手势的运动信息,但佩戴传感器不方便B.基于视觉的手势识别方法不受环境光照和背景的影响,识别稳定性高C.深度学习中的卷积神经网络在手势识别中无法处理复杂的手势变化和遮挡D.手势识别系统只要能够识别常见的几种手势,就能够满足大多数应用需求7、当进行视频中的动作识别时,假设要分析一段运动员训练的视频,识别出其中的各种动作,如跑步、跳跃和举重等。视频中的动作可能存在速度变化、遮挡和视角变化等问题。为了准确识别这些动作,以下哪种技术是关键的?()A.对每一帧图像进行独立的动作分类,然后综合结果B.利用光流信息来捕捉视频中的运动模式C.只关注视频中的关键帧,忽略其他帧D.不考虑视频的时序信息,将其视为一系列独立的图像8、计算机视觉中的姿态估计任务,确定物体在空间中的位置和方向。假设要估计一个机器人手臂的姿态,以下关于姿态估计方法的描述,正确的是:()A.基于几何模型的姿态估计方法在复杂环境中总是能够准确估计姿态B.深度学习中的端到端姿态估计网络不需要对物体的结构和运动有先验了解C.姿态估计的结果不受相机参数和拍摄角度的影响D.结合多种传感器数据和深度学习的方法可以提高姿态估计的精度和鲁棒性9、在计算机视觉的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)特征是一种经典的方法。假设我们要对一组包含不同视角和缩放比例的物体图像进行匹配,SIFT特征的哪个特性使其在这种情况下表现出色?()A.对旋转和尺度变化具有不变性B.计算速度快,效率高C.特征维度低,易于存储和处理D.对光照变化不敏感10、在计算机视觉的研究中,数据集的质量和规模对模型的训练和性能评估至关重要。以下关于数据集的描述,不准确的是()A.大规模、多样化和标注准确的数据集有助于训练出泛化能力强的模型B.一些公开的数据集如ImageNet、COCO等为计算机视觉研究提供了重要的基准C.数据集的构建需要耗费大量的时间和人力,但可以通过数据增强技术来减少对原始数据的需求D.数据集一旦构建完成,就不需要再进行更新和扩展,能够一直满足研究的需求11、图像分类是计算机视觉中的常见任务之一。对于图像分类模型的训练,以下说法错误的是()A.需要大量有标注的图像数据来学习不同类别的特征B.卷积神经网络(CNN)在图像分类任务中表现出色C.模型的训练过程是不断调整参数以最小化预测误差的过程D.图像分类模型一旦训练完成,就无法再对新的类别进行学习和分类12、在计算机视觉中,图像去雾是提高有雾图像质量的技术。以下关于图像去雾的描述,不准确的是()A.图像去雾可以基于物理模型或深度学习方法来实现B.深度学习方法在图像去雾中能够有效地恢复图像的细节和颜色C.图像去雾只对轻度有雾的图像有效,对于浓雾图像效果不佳D.图像去雾可以提高图像的清晰度和可视性,有助于后续的处理和分析13、视频理解是计算机视觉中的一个具有挑战性的任务。以下关于视频理解的叙述,不准确的是()A.视频理解不仅需要分析每一帧图像的内容,还需要考虑帧之间的时间关系B.循环神经网络(RNN)和长短期记忆网络(LSTM)在处理视频序列数据时具有优势C.视频理解在视频监控、行为分析和内容推荐等方面具有广泛的应用前景D.目前的视频理解技术已经能够完全理解复杂场景下的视频内容,不存在任何挑战14、在计算机视觉的三维重建任务中,假设要从一系列二维图像重建出物体的三维模型。以下关于相机参数校准的重要性,哪一项是不正确的?()A.准确的相机参数有助于提高三维重建的精度B.相机参数校准可以减少重建过程中的误差累积C.即使相机参数不准确,也能通过后续处理得到精确的三维模型D.不同相机的参数差异会影响三维重建的结果15、在计算机视觉的文本检测和识别任务中,假设要从一张图片中提取并识别其中的文字信息。以下关于文本检测和识别的描述,哪一项是不正确的?()A.可以先通过文本检测算法定位图片中的文本区域,然后进行识别B.深度学习中的卷积神经网络在文本识别中表现出色,能够准确识别各种字体和风格的文字C.文本检测和识别对于弯曲、倾斜和模糊的文字能够轻松应对,没有任何困难D.可以结合光学字符识别(OCR)技术,将图片中的文字转换为可编辑的文本二、简答题(本大题共4个小题,共20分)1、(本题5分)解释计算机视觉中的手势识别技术。2、(本题5分)简述计算机视觉在水利工程中的应用。3、(本题5分)计算机视觉中如何进行摄像机标定?4、(本题5分)简述图像的多尺度分析方法。三、应用题(本大题共5个小题,共25分)1、(本题5分)设计一个程序,通过计算机视觉识别不同品牌的投影仪。2、(本题5分)开发一个能够识别不同种类蜂类的程序。3、(本题5分)通过计算机视觉,对不同类型的根雕作品进行分类。4、(本题5分)使用计算机视觉方法,检测机场跑道上是否有异物。5、(本题5分)利用图像增强技术,改善逆光拍摄图像的质量。四、分析题(本大题共4个小题,共40分)1、(本题10分)以某化妆品品牌的包装设计为例,分析其外观造型、材质选择、色彩搭配如何吸引消费者,体现品牌的高端定位。2、(本题10分)以一个时尚品牌的时装周秀场设计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《平衡记分卡的应用》课件
- 《企业人力绩效管理》课件
- 2024-2025学年天津市红桥区高一上学期期中考试历史试卷(解析版)
- 单位管理制度分享汇编人事管理
- 单位管理制度分享大全人力资源管理十篇
- 单位管理制度范例选集人力资源管理篇
- 《磺达肝癸钠》课件
- 单位管理制度呈现大合集人力资源管理十篇
- 《市场营销学案例分》课件
- 《投资经济学》教学大纲
- 2021年新疆乌鲁木齐市中考化学一模试卷(附答案详解)
- 张家爷爷的小花狗2
- 高中思想政治-高三一轮复习讲评课教学课件设计
- 自动喷水灭火系统的设计计算
- 教师评职称个人综述
- LSI-阵列卡操作手册
- 汉字文化解密(华中师范大学)超星尔雅学习通网课章节测试答案
- 黑龙江省哈尔滨市八年级上学期物理期末考试试卷及答案
- 商业综合体设计说明书
- GB/T 19587-2017气体吸附BET法测定固态物质比表面积
- 比赛车门凹陷修复
评论
0/150
提交评论