版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版八年级上册数学期末考试试题一、选择题。(每小题只有一个正确答案,每小题3分)1.的立方根是()A.8 B.2 C.±8 D.±42.四个数0,1,2,12A.2B.1C.123.下列几组长度的3条线段能构成直角三角形的有()①3,4,5;②4,5,6;③1.5,2,2.5;④8,15,17;⑤5,8,17.A.①②④B.②④⑤C.①③⑤D.①③④4.下列计算正确的是()A.−42=﹣4B.2+3=5C.π−15.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:8、10、9、7、7、9、8、9,下列说法不正确的是()A.众数是9B.中位数是8.5C.极差是3D.平均数是8.46.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°7.如图,CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=12,则CE的值为()A.3 B.4 C.5 D.68.如图,在平面直角坐标系中,直线l1:y=﹣24x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则kA.23B.22C.2D.9.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得()A. B. C. D.10.下列命题是真命题的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等11.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个 B.3个 C.2个 D.1个12.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边上的点F处,若AD=2,BC=6,则EF的值是()A.23 B.3 C.5 D.25二、填空题13.已知点P(﹣2,1),则点P关于x轴对称的点的坐标是_____.14.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.15.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为______米.16.已知点A(2,﹣4),直线y=﹣x﹣2与y轴交于点B,在x轴上存在一点P,使得PA+PB的值最小,则点P的坐标为_____.三、解答题17.计算:(5−18.解方程组:(1)(2)19.某校260名学生参加植树活动,要求每人植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数和中位数;(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵?20.科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射出去,若b镜反射出的光线n平行于m,且∠1=30°,则∠2=,∠3=;(2)在(1)中,若∠1=70°,则∠3=;若∠1=a,则∠3=;(3)由(1)(2)请你猜想:当∠3=时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行的?请说明理由.(提示:三角形的内角和等于180°)21.某商场元旦期间举行优惠活动,对甲、乙两种商品实行打折出售,打折前,购买5间甲商品和1件乙商品需要84元,购买6件甲商品和3件乙商品需要108元,元旦优惠打折期间,购买50件甲商品和50件乙商品仅需960元,这比不打折前节省多少钱?22.如图,甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.分析甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分钟)变化的函数图象,解决下列问题:(1)求出甲、乙两人所行驶的路程S甲、S乙与t之间的关系式;(2)甲行驶10分钟后,甲、乙两人相距多少千米?23.如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数.24.建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.实践操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.参考答案1.B【分析】先求出=8,再求出8的立方根即可.【详解】∵=8,∴的立方根是.故选B.【点睛】本题考查了算术平方根、立方根的定义,能熟记算术平方根和立方根定义是解此题的关键,注意:a(a≥0)的平方根是,a的立方根是.2.A【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】0,1,122是无理数,故选A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.3.D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】①32+42=52,故能构成直角三角形;②42+52≠62,故不能构成直角三角形;③1.52+22=2.52,故能构成直角三角形;④82+152=172,故能构成直角三角形;⑤52+82≠172,故不能构成直角三角形.故选D.【点睛】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.C【解析】【分析】根据a2=|【详解】A.(−4)B.2和3不能合并,故原题计算错误;C.(πD.32故选C.【点睛】本题考查了二次根式的加减和二次根式的性质,关键是掌握二次根式的性质和计算法则.5.D【解析】【分析】由题意可知:一组数据中,出现次数最多的数就叫这组数据的众数,则这组数据的众数为9;总数个数是偶数的,按从小到大的顺序,取中间两个数的平均数为中位数,则中位数为8.5;一组数据中最大数据与最小数据的差为极差,据此求出极差为3;根据平均数计算公式求出这组数据的平均数,然后判断即可.【详解】A.9出现了3次,次数最多,所以众数是9,故选项说法正确;B.按从小到大排列为:7,7,8,8,9,9,9,10,中位数是:(8+9)÷2=8.5,故选项说法正确;C.极差是:10﹣7=3,故选项说法正确;D.平均数=(8+10+9+7+7+9+8+9)÷8=8.375,故选项说法不正确.故选D.【点睛】本题考查了中位数、众数、平均数与极差的概念,是基础题,熟记定义是解决本题的关键.6.A【解析】【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选:A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.7.B【详解】试题解析:由镜面反射对称可知:∠A=∠B=∠α,∠AEC=∠BED.∴△AEC∽△BED.∴又∵若AC=3,BD=6,CD=12,∴解得EC=4.故选B.点睛:两组角对应相等,两个三角形相似.8.B【解析】【分析】过C作CD⊥OA于D,利用直线l1:y=−24x+1,即可得到A(22,0),B(0,1),AB=AO2+BO2=3。依据CD∥BO,可得OD=13AO=223,CD=23【详解】如图,过C作CD⊥OA于D.直线l1:y=−24x+1中,令x=0,则y=1,令y=0,则x=22,即A(22,0),B(0,1),∴Rt△AOB中,AB∵∠BOC=∠BCO,∴CB=BO=1,AC=2.∵CD∥BO,∴OD=13AO=223,CD=23BO=23,即C(232,23),把C(2故选B.【点睛】本题考查了两直线相交或平行问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.9.B【解析】分析:根据题意,确定等量关系为:若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,根据所设未知数列方程,构成方程组即可.详解:设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得:,故选B.点睛:此题主要考查了二元一次方程组的应用,关键是确定问题中的等量关系,列方程组.10.D【详解】解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B、=4的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D.11.B【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选B.【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.12.A【解析】【分析】如图,首先运用翻折变换的性质求出CF、DF的长度,证明∠DEC=90°;进一步证明△EFD∽△CFE,由相似三角形对应边成比例即可求出EF的长度.【详解】如图,由翻折变换的性质得:CF=CB=6,DF=DA=2,∠EFC=∠B=90°;∠AED=∠FED,∠BEC=∠FEC,∴∠DEC=12×180°=90°∵∠EDC+∠DCE=90°,∠EDC+∠DEF=90°,∴∠DEF=∠DCE,∵∠EFD=∠CFE=90°,∴△EFD∽△CFE,∴EF:CF=DF:EF,∴EF2=DF•FC=2×6=12,∴EF故选A.【点睛】主要考查了翻折变换的性质、相似三角形的判定与性质等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、相似三角形的判定与性质等几何知识点来分析、判断、推理或解答.13.(-2,-1);【解析】【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点睛】本题考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.14.52.【解析】∵一组数据:3,a,4,6,7,它们的平均数是5,∴,解得,,∴=2.故答案为5,2.15.1500【分析】由题意可知∠NAB=75°,∠SAC=15°,从而得到∠BAC=90°,然后利用勾股定理即可求出BC.【详解】解:由题意可知∠NAB=75°,∠SAC=15°,∴∠BAC=90°,∵AB=900米,AC=1200米,∴BC==1500米.故答案为1500.【点睛】本题考查了勾股定理的应用,得到∠BAC=90°是解题的关键.16.(,0)【分析】作点B关于x轴的对称点B′,连接AB′,交x轴于P,连接PB,此时PA+PB的值最小.求出直线AB′的解析式即可解决问题.【详解】作点B关于x轴的对称点B′,连接AB′,交x轴于P,连接PB,此时PA+PB的值最小.设直线AB′的解析式为y=kx+b,把A(2,﹣4),B′(0,2)代入得:,解得:,∴直线AB′的解析式为y=﹣3x+2,令y=0,得:x,∴P(,0).故答案为(,0).【点睛】本题考查了一次函数图象上的点的特征,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.17.7-23【解析】【分析】利用平方差公式和完全平方公式计算即可.【详解】原式=5−2+3−23+1=7﹣2【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.18.(1);(2).【解析】【分析】(1)利用加减消元法求解可得;(2)利用加减消元法求解可得.【详解】(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(1)条形统计图中D类型的人数错误;2人;(2)众数为5,中位数为5;(3)1378棵.【分析】(1)利用总人数20乘以对应的百分比即可求得D类的人数解答;
(2)根据众数、中位数的定义即可直接求解;
(3)首先求得调查的20人的平均数,乘以总人数260即可.【详解】(1)条形统计图中D类型的人数错误,D类的人数是:20×10%=2(人).(2)由统计图可知:B类型的人数最多,且为8人,所以众数为5,由条形统计图可知中位数为B类型对应的5;(3)(棵).估计260名学生共植树5.3×260=1378(棵).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)60°;90°;(2)90°;90°;(3)90°.【解析】试题分析:根据入射角与反射角相等,可得
(1)根据邻补角的定义可得,根据m∥n,所以根据三角形内角和为180°,即可求出答案;
(2)结合题(1)可得∠3的度数都是90°;
(3)证明m∥n,由∠3=90°,证得∠6与∠7互补即可.试题解析:(1)∵入射角与反射角相等,即∠1=∠4,∠5=∠2,根据邻补角的定义可得根据m∥n,所以所以根据三角形内角和为所以故答案为(2)由(1)可得∠3的度数都是(3)理由:因为所以又由题意知∠1=∠4,∠5=∠2,所以由同旁内角互补,两直线平行,可知:m∥n.21.比不打折前节省40元.【分析】设甲商品单价为x元,乙商品单价为y元,根据购买5间甲商品和1件乙商品需要84元,购买6件甲商品和3件乙商品需要108元,列出方程组,继而可计算购买50件甲商品和50件乙商品需要的花费,也可得出比不打折前少花多少钱.【详解】设打折前甲商品每件x元,乙商品每件y元.根据题意,得,解方程组,
打折前购买50件甲商品和50件乙商品共需50×16+50×4=1000元,比不打折前节省1000-960=40元.答:比不打折前节省40元.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.(1)S甲=0.5t;S乙=t﹣6;(2)甲行驶10分钟后,甲、乙两人相距1千米;【详解】分析:设出函数解析式,用待定系数法求解即可.代入中的函数解析式即可求出.详解:(1)由图象设甲的解析式为:S甲=kt,代入点,解得:k=0.5;所以甲的解析式为:S甲=0.5t;同理可设乙的解析式为:S乙=mt+b,代入点可得:解得:,所以乙的解析式为S乙(2)当t=10时,S甲=0.5×10=5(千米),S乙=10-6=4(千米),5-4=1(千米),答:甲行驶10分钟后,甲、乙两人相距1千米.点睛:考查一次函数的应用,掌握待定系数法求一次函数解析式是解题的关键.23.74°.【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角的平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.试题解析:解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣(30°+62°)=180°﹣92°=88°,∵CE平分∠ACB,∴∠ECB=∠ACB=44°,∵CD⊥AB于D,∴∠CDB=90°,∴∠BCD=90°﹣∠B=90°﹣62°=28°,∴∠ECD=∠ECB﹣∠BCD=44°﹣28°=16°,∵DF⊥CE于F,∴∠CFD=90°,∴∠CDF=90°﹣∠ECD=90°﹣16°=74°.考点:三角形内角和定理.24.实践操作:详见解析;模型应用:(1)y=x+4;(2)A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或4.【分析】操作:根据余角的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理咨询师专业培训招聘合同
- 大型酒店照明电路改造合同
- 师带徒知识传播办法
- 学校绿化施工合同协议书
- 珠宝首饰库存管理模板
- 隔音降噪施工备案申请书
- 渔业养殖钢架棚施工合同
- 宾馆卫生站护理员工招聘协议
- 证券行业薪酬管理办法
- 四川省旅游设施改造招标文件
- 广东省深圳市2023-2024学年高二上学期期末测试英语试卷(含答案)
- 人教版一年级数学2024版上册期末测评(提优卷一)(含答案)
- 医疗护理员理论知识考核试题题库及答案
- 2024湖南田汉大剧院事业单位招聘若干人易考易错模拟试题(共500题)试卷后附参考答案
- 2025届全国名校大联考物理高二第一学期期末联考试题含解析
- 减肥课件模板教学课件
- 2024年部门年终总结
- 公司招商部工作流程及管理制度
- 汉语阅读教程第一册第十二课
- Python语言基础与应用学习通超星期末考试答案章节答案2024年
- 江苏省南京市六校2024-2025学年高一上学期期中联合调研 化学试题
评论
0/150
提交评论