下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
绝密★启用前2024—2025学年上学期高二年级期中考试数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线的倾斜角为,且经过点,则的方程为()A. B.C. D.2.在空间直角坐标系中,直线过点且以为方向向量,为直线上的任意一点,则点的坐标满足的关系式是()A B.C. D.3.若圆过,两点,则当圆的半径最小时,圆的标准方程为()A. B.C. D.4.在四面体中,为棱的中点,为线段的中点,若,则()A. B.1 C.2 D.35.若直线与圆相离,则点()A.在圆外 B.在圆内C.在圆上 D.位置不确定6.已知直线经过点,且与圆:相交于,两点,若,则直线的方程为()A.或 B.或C.或 D.或7.曲线的周长为()A. B. C. D.8.如图,在多面体中,底面是边长为1的正方形,为底面内的一个动点(包括边界),底面底面,且,则的最小值与最大值分别为()A. B. C. D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若构成空间的一个基底,则下列向量共面的是()A.,, B.,,C.,, D.,,10.已知直线的方程为,则下列结论正确的是()A.点不可能在直线上B.直线恒过点C.若点到直线的距离相等,则D.直线上恒存在点,满足11.如图,在三棱锥中,平面分别为的中点,是的中点,是线段上的动点,则()A.存在,使得B.不存点,使得C.的最小值为D.异面直线与所成角的余弦值为三、填空题:本题共3小题,每小题5分,共15分.12.在空间直角坐标系中,点与关于原点对称,则点的坐标为__________.13.若圆关于直线对称,则点与圆心的距离的最小值是__________.14.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》中有这样一个结论:平面内与两点距离的比为常数()的点的轨迹是圆,后人称这个圆为阿波罗尼斯圆.已知点,为直线:上的动点,为圆:上的动点,则的最小值为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知圆圆心在直线和直线的交点上,且圆过点.(1)求圆的方程;(2)若圆的方程为,判断圆与圆的位置关系.16.如图,在四棱锥中,四边形是矩形,为的中点.(1)证明:;(2)求直线与平面所成角正弦值.17.已知直线:.(1)若直线与.平行,且之间的距离为,求的方程;(2)为上一点,点,,求取得最大值时点的坐标.18.如图,在斜三棱柱中,平面平面是边长为2的等边三角形,为的中点,且为的中点,为的中点,.(1)设向量为平面的法向量,证明:;(2)求点到平面的距离;(3)求平面与平面夹角的余弦值.19.在平面直角坐标系中,定义为两点,的“切比雪夫距离”,又设点P及直线上任意一点Q,称的最小值为点P到的“切比雪夫距离”,记作.(1)已知点和点,直线:,求和.(2)已知圆C:和圆E:(i)若两圆心的切比雪夫距离,判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年物业管理合同住宅小区物业服务
- 2024年装饰工程承包合同书专业模板版B版
- 2024年版企业工伤事故损害赔偿协商合同版B版
- 2024幼儿园教师教育教学成果展示与学术交流合同3篇
- 2024年特许经营合同协议书模板
- 2024年美容美发产品特许经营合同
- 2024年度驾驶员岗位技能培训与考核聘用合同6篇
- 2024年度LED灯具批发采购合同质量检测规范3篇
- 康复科护士总结
- 酒店管理者工作心得总结
- 2024年中国大数据企业排行榜V9.0(大数据产业白皮书)-中国民营科技促进会
- 2025年统编版高考政治一轮复习:选择性必修1、2、3共3册必背考点知识点汇编
- 货物交接单和交接合同
- 《灭火应急疏散预案》课件
- 【高分复习笔记】孙广仁《中医基础理论》(第9版)笔记与考研真题详解
- 开题报告:高质量数字教材建设机制及政策研究
- PE工程师工作总结
- 华东师范大学《法学导论(Ⅰ)》2023-2024学年第一学期期末试卷
- 空压机操作安全培训
- 自然辩证法论述题146题带答案(可打印版)
- 工程施工日志60篇
评论
0/150
提交评论