2025年高考数学复习热搜题速递之函数概念与性质(2024年7月)_第1页
2025年高考数学复习热搜题速递之函数概念与性质(2024年7月)_第2页
2025年高考数学复习热搜题速递之函数概念与性质(2024年7月)_第3页
2025年高考数学复习热搜题速递之函数概念与性质(2024年7月)_第4页
2025年高考数学复习热搜题速递之函数概念与性质(2024年7月)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)2025年高考数学复习热搜题速递之函数概念与性质(2024年7月)一.选择题(共10小题)1.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1) B.(-1,-12) C.(﹣12.已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.503.函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]4.已知f(x)=ax2+bx是定义在[a﹣1,2a]上的偶函数,那么a+b的值是()A.-13 B.13 C.-15.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(-2),则aA.(﹣∞,12) B.(﹣∞,12)∪(32,C.(12,32) D.(326.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2) B.(﹣∞,﹣1) C.(1,+∞) D.(4,+∞)7.已知函数f(x)的定义域为R,当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>12时,f(x+12)=f(x-1A.﹣2 B.1 C.0 D.28.函数f(x)=4-|x|A.(2,3) B.(2,4] C.(2,3)∪(3,4] D.(﹣1,3)∪(3,6]9.设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log314)>f(2-32)>fB.f(log314)>f(2-23)>fC.f(2-32)>f(2-23)>fD.f(2-23)>f(2-32)>10.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则f(A.-12 B.-14 C.1二.填空题(共5小题)11.已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(2)=.12.已知函数f(x)=ln(1+x2-x)+1,f(a)=4,则f(﹣a)=13.已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.14.设函数f(x)=x+1,x≤02x,x>0,则满足f(x)+f(x15.已知函数f(x)=x3(a•2x﹣2﹣x)是偶函数,则a=.三.解答题(共5小题)16.已知定义域为R的函数f(x)=-(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.17.已知函数f((Ⅰ)证明f(x)在[1,+∞)上是增函数;(Ⅱ)求f(x)在[1,4]上的最大值及最小值.18.已知f(x)=9x﹣2×3x+4,x∈[﹣1,2].(1)设t=3x,x∈[﹣1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.19.已知函数f(x)=x2+2ax+2,x∈[﹣5,5],(1)当a=1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.20.已知a∈R,函数f(x)=log2(1x+(1)当a=1时,解不等式f(x)>1;(2)若关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素,求a的值;(3)设a>0,若对任意t∈[12,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a

2025年高考数学复习热搜题速递之函数概念与性质(2024年7月)参考答案与试题解析一.选择题(共10小题)1.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()A.(﹣1,1) B.(-1,-12) C.(﹣1【考点】函数的定义域及其求法.【专题】函数的性质及应用.【答案】B【分析】原函数的定义域,即为2x+1的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(﹣1,0),∴﹣1<2x+1<0,解得﹣1<x<-1∴则函数f(2x+1)的定义域为(-故选:B.【点评】考查复合函数的定义域的求法,注意变量范围的转化,属简单题.2.已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【考点】抽象函数的周期性.【专题】整体思想;定义法;函数的性质及应用.【答案】C【分析】根据函数奇偶性和对称性的关系求出函数的周期是4,结合函数的周期性和奇偶性进行转化求解即可.【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.【点评】本题主要考查函数值的计算,根据函数奇偶性和对称性的关系求出函数的周期性是解决本题的关键.3.函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【考点】奇偶性与单调性的综合.【专题】转化思想;转化法;函数的性质及应用.【答案】D【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.4.已知f(x)=ax2+bx是定义在[a﹣1,2a]上的偶函数,那么a+b的值是()A.-13 B.13 C.-1【考点】奇函数偶函数的判断.【专题】常规题型;转化思想;综合法;函数的性质及应用;数据分析.【答案】B【分析】依照偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x),由此求得b的值.且定义域关于原点对称,故a﹣1=﹣2a,由此求得a的值,从而得到a+b的值.【解答】解:对于函数知f(x)=ax2+bx,依题意得:f(﹣x)=f(x),∴b=0.又a﹣1=﹣2a,∴a=1∴a+b=1故选:B.【点评】本题考查偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间2个端点互为相反数,属于基础题.5.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(-2),则aA.(﹣∞,12) B.(﹣∞,12)∪(32,C.(12,32) D.(32【考点】由函数的单调性求解函数或参数.【专题】函数思想;综合法;函数的性质及应用.【答案】C【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<2【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(-2)=f(2∴2|a﹣1|<2∴|a﹣1|<1解得12故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.6.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2) B.(﹣∞,﹣1) C.(1,+∞) D.(4,+∞)【考点】复合函数的单调性.【专题】转化思想;转化法;函数的性质及应用;数学建模;数学运算.【答案】D【分析】由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,结合复合函数单调性“同增异减”的原则,可得答案.【解答】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.【点评】本题考查的知识点是复合函数的单调性,对数函数的图象和性质,二次数函数的图象和性质,难度中档.7.已知函数f(x)的定义域为R,当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>12时,f(x+12)=f(x-1A.﹣2 B.1 C.0 D.2【考点】函数的周期性;函数的值.【专题】综合题;转化思想;综合法;函数的性质及应用.【答案】D【分析】求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论.【解答】解:∵当x>12时,f(x+12)=f∴当x>12时,f(x+1)=f(x),即周期为∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.【点评】本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题.8.函数f(x)=4-|x|A.(2,3) B.(2,4] C.(2,3)∪(3,4] D.(﹣1,3)∪(3,6]【考点】函数的定义域及其求法.【专题】函数的性质及应用;数学运算.【答案】C【分析】根据函数成立的条件进行求解即可.【解答】解:要使函数有意义,则4-即-4(x-2)(x-3)x-3>0②x<3(x-2)(x-3)即2<x<3或x>3,∵﹣4≤x≤4,∴解得3<x≤4且2<x<3,即函数的定义域为(2,3)∪(3,4],故选:C.【点评】本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.9.设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log314)>f(2-32)>fB.f(log314)>f(2-23)>fC.f(2-32)>f(2-23)>fD.f(2-23)>f(2-32)>【考点】函数的奇偶性;由函数的单调性求解函数或参数.【专题】函数思想;函数的性质及应用.【答案】C【分析】根据log34>log33=1,0<2-32【解答】解:∵f(x)是定义域为R的偶函数,∴f(∵log34>log33=1,0<∴0<f(x)在(0,+∞)上单调递减,∴f(故选:C.【点评】本题考查了函数的奇偶性和单调性,关键是指对数函数单调性的灵活应用,属基础题.10.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则f(A.-12 B.-14 C.1【考点】函数的奇偶性.【专题】计算题.【答案】A【分析】由题意得f(-52)=f(-1【解答】解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴f(-52)=f(-12)=﹣f(12)=﹣2×故选:A.【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.二.填空题(共5小题)11.已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(2)=12.【考点】函数的奇偶性.【专题】转化思想;转化法;函数的性质及应用.【答案】见试题解答内容【分析】由已知中当x∈(﹣∞,0)时,f(x)=2x3+x2,先求出f(﹣2),进而根据奇函数的性质,可得答案.【解答】解:∵当x∈(﹣∞,0)时,f(x)=2x3+x2,∴f(﹣2)=﹣12,又∵函数f(x)是定义在R上的奇函数,∴f(2)=12,故答案为:12【点评】本题考查的知识点是函数奇偶性的性质,函数求值,难度不大,属于基础题.12.已知函数f(x)=ln(1+x2-x)+1,f(a)=4,则f(﹣a)=﹣【考点】函数的奇偶性.【专题】计算题;函数思想;综合法;函数的性质及应用.【答案】见试题解答内容【分析】利用函数的奇偶性的性质以及函数值,转化求解即可.【解答】解:函数g(x)=ln(1+x2满足g(﹣x)=ln(1+x2+x)=ln11+x2-所以g(x)是奇函数.函数f(x)=ln(1+x2-x)+1,f(a可得f(a)=4=ln(1+a2-a)+1,可得ln(1+a则f(﹣a)=﹣ln(1+a2-a)+1=﹣3+1故答案为:﹣2.【点评】本题考查奇函数的简单性质以及函数值的求法,考查计算能力.13.已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【答案】见试题解答内容【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.14.设函数f(x)=x+1,x≤02x,x>0,则满足f(x)+f(x-1【考点】函数的值.【专题】分类讨论;转化法;函数的性质及应用.【答案】见试题解答内容【分析】根据分段函数的表达式,分别讨论x的取值范围,进行求解即可.【解答】解:若x≤0,则x-1则f(x)+f(x-12)>1等价为x+1+x-12+1>1,即2x此时-14<x当x>0时,f(x)=2x>1,x-1当x-12>0即x>12时,满足f(x)+f(当0≥x-12>-12,即12≥x>0时,f(x-此时f(x)+f(x-12)>综上x>-1故答案为:(-14,【点评】本题主要考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键.15.已知函数f(x)=x3(a•2x﹣2﹣x)是偶函数,则a=1.【考点】函数的奇偶性.【专题】计算题;方程思想;综合法;函数的性质及应用;数学运算.【答案】1.【分析】利用奇函数的定义即可求解a的值.【解答】解:函数f(x)=x3(a•2x﹣2﹣x)是偶函数,y=x3为R上的奇函数,故y=a•2x﹣2﹣x也为R上的奇函数,所以y|x=0=a•20﹣20=a﹣1=0,所以a=1.法二:因为函数f(x)=x3(a•2x﹣2﹣x)是偶函数,所以f(﹣x)=f(x),即﹣x3(a•2﹣x﹣2x)=x3(a•2x﹣2﹣x),即x3(a•2x﹣2﹣x)+x3(a•2﹣x﹣2x)=0,即(a﹣1)(2x+2﹣x)x3=0,所以a=1.故答案为:1.【点评】本题主要考查利用函数奇偶性的应用,考查计算能力,属于基础题.三.解答题(共5小题)16.已知定义域为R的函数f(x)=-(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.【考点】奇偶性与单调性的综合.【专题】压轴题.【答案】见试题解答内容【分析】(Ⅰ)利用奇函数定义,在f(﹣x)=﹣f(x)中的运用特殊值求a,b的值;(Ⅱ)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2﹣2t)+f(2t2﹣k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.【解答】解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,即b又由f(1)=﹣f(﹣1)知1-2a所以a=2,b=1.经检验a=2,b=1时,f((Ⅱ)由(Ⅰ)知f(易知f(x)在(﹣∞,+∞)上为减函数.又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式Δ=4+12所以k的取值范围是k<-1【点评】本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略.17.已知函数f((Ⅰ)证明f(x)在[1,+∞)上是增函数;(Ⅱ)求f(x)在[1,4]上的最大值及最小值.【考点】函数的单调性.【专题】计算题.【答案】见试题解答内容【分析】(I)用单调性定义证明,先任取两个变量且界定大小,再作差变形看符号.(II)由(I)知f(x)在[1,+∞)上是增函数,可知在[1,4]也是增函数,则当x=1时,取得最小值,当x=4时,取得最大值.【解答】(I)证明:在[1,+∞)上任取x1,x2,且x1<x2(2分)f(x1=(x1-∵x1<x2∴x1﹣x2<0∵x1∈[1,+∞),x2∈[1,+∞)∴x1x2﹣1>0∴f(x1)﹣f(x2)<0即f(x1)<f(x2)故f(x)在[1,+∞)上是增函数(2分)(II)解:由(I)知:f(x)在[1,4]上是增函数∴当x=1时,有最小值2;当x=4时,有最大值174(2【点评】本题主要考查单调性证明和应用单调性求函数最值问题.18.已知f(x)=9x﹣2×3x+4,x∈[﹣1,2].(1)设t=3x,x∈[﹣1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.【考点】函数的最值.【专题】计算题.【答案】见试题解答内容【分析】(1)设t=3x,由x∈[﹣1,2],且函数t=3x在[﹣1,2]上是增函数,故有13≤t≤9,由此求得(2)由f(x)=t2﹣2t+4=(t﹣1)2+3,可得此二次函数的对称轴为t=1,且13≤t≤9,由此求得f(【解答】解:(1)设t=3x,∵x∈[﹣1,2],函数t=3x在[﹣1,2]上是增函数,故有13≤t≤9,故t的最大值为9,t的最小值为(2)由f(x)=9x﹣2×3x+4=t2﹣2t+4=(t﹣1)2+3,可得此二次函数的对称轴为t=1,且13≤t≤故当t=1时,函数f(x)有最小值为3,当t=9时,函数f(x)有最大值为67.【点评】本题主要考查指数函数的综合题,求二次函数在闭区间上的最值,属于中档题.19.已知函数f(x)=x2+2ax+2,x∈[﹣5,5],(1)当a=1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.【考点】函数的最值;由函数的单调性求解函数或参数.【专题】常规题型;计算题.【答案】见试题解答内容【分析】(1)先求出二次函数的对称轴,结合开口方向可知再对称轴处取最小值,在离对称轴较远的端点处取最大值;(2)要使y=f(x)在区间[﹣5,5]上是单调函数,只需当区间[﹣5,5]在对称轴的一侧时,即满足条件.【解答】解:(1)f(x)=x2+2ax+2=(x+a)2+2﹣a2,其对称轴为x=﹣a,当a=1时,f(x)=x2+2x+2,所以当x=﹣1时,f(x)min=f(﹣1)=1﹣2+2=1;当x=5时,即当a=1时,f(x)的最大值是37,最小值是1.(6分)(2)当区间[﹣5,5]在对称轴的一侧时,函数y=f(x)是单调函数.所以﹣a≤﹣5或﹣a≥5,即a≥5或a≤﹣5,即实数a的取值范围是(﹣∞,﹣5]∪[5,+∞)时,函数在区间[﹣5,5]上为单调函数.(12分)【点评】本题主要考查了利用二次函数的性质求二次函数的最值,以及单调性的运用等有关基础知识,同时考查分析问题的能力.20.已知a∈R,函数f(x)=log2(1x+(1)当a=1时,解不等式f(x)>1;(2)若关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素,求a的值;(3)设a>0,若对任意t∈[12,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a【考点】函数的最值;指、对数不等式的解法;一元二次不等式及其应用.【专题】分类讨论;转化思想;函数的性质及应用;导数的综合应用;不等式的解法及应用.【答案】见试题解答内容【分析】(1)当a=1时,不等式f(x)>1化为:log2(1x(2)方程f(x)+log2(x2)=0即log2(1x+a)+log2(x2)=0,(1x+a)x2=1,化为:ax2+x﹣1=(3)a>0,对任意t∈[12,1],函数f(x)在区间[t,t+1]上单调递减,由题意可得log2(1t+a)-log2(1t+1+a【解答】解:(1)当a=1时,不等式f(x)>1化为:log2∴1x+1>2,化为:1x>1,解得经过验证满足条件,因此不等式的解集为:(0,1).(2)方程f(x)+log2(x2)=0即log2(1x+a)+log2(x2)=0,∴(1x+a)x2=1,化为:ax2+x﹣若a=0,化为x﹣1=0,解得x=1,经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.若a≠0,令Δ=1+4a=0,解得a=-14,解得x=2.经过验证满足:关于x的方程f(x)+log2(x2)=0综上可得:a=0或-1(3)a>0,对任意t∈[12,1],函数f(x)在区间[t,t+1]∴log2∴(1+ta)(化为:a≥1-tt2+t=g(t),g′(t)=-(∴g(t)在t∈[12,1]上单调递减,∴t=12时,g(t∴a≥∴a的取值范围是[2【点评】本题考查了对数函数的运算法则单调性、不等式的解法、利用导数研究函数的单调性极值与最值,考查了分类讨论方法、推理能力与计算能力,属于难题.

考点卡片1.指、对数不等式的解法【知识点的认识】不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解.特例:①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+bx+c>0(a≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则.(3)无理不等式:转化为有理不等式求解.(4)指数不等式:转化为代数不等式(5)对数不等式:转化为代数不等式(6)含绝对值不等式①应用分类讨论思想去绝对值;②应用数形思想;③应用化归思想等价转化.注:常用不等式的解法举例(x为正数):2.一元二次不等式及其应用【知识点的认识】含有一个未知数且未知数的最高次数为2的不等式叫做一元二次不等式.它的一般形式是ax2+bx+c>0或ax2+bx+c<0(a不等于0)其中ax2+bx+c是实数域内的二次三项式.特征当△=b2﹣4ac>0时,一元二次方程ax2+bx+c=0有两个实根,那么ax2+bx+c可写成a(x﹣x1)(x﹣x2)当△=b2﹣4ac=0时,一元二次方程ax2+bx+c=0仅有一个实根,那么ax2+bx+c可写成a(x﹣x1)2.当△=b2﹣4ac<0时.一元二次方程ax2+bx+c=0没有实根,那么ax2+bx+c与x轴没有交点.【解题方法点拨】例1:一元二次不等式x2<x+6的解集为.解:原不等式可变形为(x﹣3)(x+2)<0所以,﹣2<x<3故答案为:(﹣2,3).这个题的特点是首先它把题干变了形,在这里我们必须要移项写成ax2+bx+c<0的形式;然后应用了特征当中的第一条,把它写成两个一元一次函数的乘积,所用的方法是十字相乘法;最后结合其图象便可求解.【命题方向】①一元二次不等式恒成立问题:一元二次不等式ax2+bx+c>0的解集是R的等价条件是:a>0且△<0;一元二次不等式ax2+bx+c<0的解集是R的等价条件是:a<0且△<0.②分式不等式问题:f(x)g(x)>0⇔f(f(x)g(x)<0⇔f(f(x)gf(x)g3.函数的定义域及其求法【知识点的认识】函数的定义域就是使函数有意义的自变量的取值范围.求解函数定义域的常规方法:①分母不等于零;②根式(开偶次方)被开方式≥0;③对数的真数大于零,以及对数底数大于零且不等于1;④指数为零时,底数不为零.⑤实际问题中函数的定义域;【解题方法点拨】求函数定义域,一般归结为解不等式组或混合组.(1)当函数是由解析式给出时,其定义域是使解析式有意义的自变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如长度、面积必须大于零、人数必须为自然数等).(3)若一函数解析式是由几个函数经四则运算得到的,则函数定义域应是同时使这几个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)抽象函数的定义域:①对在同一对应法则f下的量“x”“x+a”“x﹣a”所要满足的范围是一样的;②函数g(x)中的自变量是x,所以求g(x)的定义域应求g(x)中的x的范围.【命题方向】高考会考中多以小题形式出现,也可以是大题中的一小题.4.函数的单调性【知识点的认识】一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.【解题方法点拨】判断函数的单调性,有四种方法:定义法;导数法;函数图象法;基本函数的单调性的应用;复合函数遵循“同增异减”;证明方法有定义法;导数法.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用符号“∪”联结,也不能用“或”联结,只能用“和”或“,”连结.设任意x1,x2∈[a,b]且x1≠x2,那么①f(x1)-f(x2)x1f(x1)-f(x2)x1②(x1﹣x2)[f(x1)﹣f(x2)]>0⇔f(x)在[a,b]上是增函数;(x1﹣x2)[f(x1)﹣f(x2)]<0⇔f(x)在[a,b]上是减函数.函数的单调区间,定义求解求解一般包括端点值,导数一般是开区间.【命题方向】函数的单调性及单调区间.是高考的重点内容,一般是压轴题,常与函数的导数相结合,课改地区单调性定义证明考查大题的可能性比较小.从近三年的高考试题来看,函数单调性的判断和应用以及函数的最值问题是高考的热点,题型既有选择题、填空题,又有解答题,难度中等偏高;客观题主要考查函数的单调性、最值的灵活确定与简单应用,主观题在考查基本概念、重要方法的基础上,又注重考查函数方程、等价转化、数形结合、分类讨论的思想方法.预测明年高考仍将以利用导数求函数的单调区间,研究单调性及利用单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能力.5.由函数的单调性求解函数或参数【知识点的认识】一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1>x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是减函数.若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.【解题方法点拨】证明函数的单调性用定义法的步骤:①取值;②作差;③变形;④确定符号;⑤下结论.利用函数的导数证明函数单调性的步骤:第一步:求函数的定义域.若题设中有对数函数一定先求定义域,若题设中有三次函数、指数函数可不考虑定义域.第二步:求函数f(x)的导数f′(x),并令f′(x)=0,求其根.第三步:利用f′(x)=0的根和不可导点的x的值从小到大顺次将定义域分成若干个小开区间,并列表.第四步:由f′(x)在小开区间内的正、负值判断f(x)在小开区间内的单调性;求极值、最值.第五步:将不等式恒成立问题转化为f(x)max≤a或f(x)min≥a,解不等式求参数的取值范围.第六步:明确规范地表述结论【命题方向】从近三年的高考试题来看,函数单调性的判断和应用以及函数的最值问题是高考的热点,题型既有选择题、填空题,又有解答题,难度中等偏高;客观题主要考查函数的单调性、最值的灵活确定与简单应用,主观题在考查基本概念、重要方法的基础上,又注重考查函数方程、等价转化、数形结合、分类讨论的思想方法.预测明年高考仍将以利用导数求函数的单调区间,研究单调性及利用单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能力.6.复合函数的单调性【知识点的认识】所谓复合函数就是由两个或两个以上的基本函数构成,这种函数先要考虑基本函数的单调性,然后再考虑整体的单调性.平常常见的一般以两个函数的为主.【解题方法点拨】求复合函数y=f(g(x))的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成两个基本初等函数;(3)分别确定两基本初等函数的单调性;(4)按“同增异减”的原则,确定原函数的单调区间.【命题方向】理解复合函数的概念,会求复合函数的区间并判断函数的单调性.7.函数的最值【知识点的认识】函数最大值或最小值是函数的整体性质,从图象上看,函数的最大值或最小值是图象最高点或最低点的纵坐标,求函数的最值一般是先求出极值在求出端点的值,然后进行比较可得.【解题方法点拨】①基本不等式法:如当x>0时,求2x+8x的最小值,有2x+8x②转化法:如求|x﹣5|+|x﹣3|的最小值,那么可以看成是数轴上的点到x=5和x=3的距离之和,易知最小值为2;③求导法:通过求导判断函数的单调性进而求出极值,再结合端点的值最后进行比较.【命题方向】本知识点是常考点,重要性不言而喻,而且通常是以大题的形式出现,所以务必引起重视.本知识点未来将仍然以复合函数为基础,添加若干个参数,然后求函数的定义域、参数范围或者满足一些特定要求的自变量或者参数的范围.常用方法有分离参变量法、多次求导法等.8.函数的奇偶性【知识点的认识】①如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.②如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.【解题方法点拨】①奇函数:如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内一般是用f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性一致,而偶函数的单调性相反.例题:函数y=x|x|+px,x∈R是()A.偶函数B.奇函数C.非奇非偶D.与p有关解:由题设知f(x)的定义域为R,关于原点对称.因为f(﹣x)=﹣x|﹣x|﹣px=﹣x|x|﹣px=﹣f(x),所以f(x)是奇函数.故选B.【命题方向】函数奇偶性的应用.本知识点是高考的高频率考点,大家要熟悉就函数的性质,最好是结合其图象一起分析,确保答题的正确率.9.奇函数偶函数的判断【知识点的认识】奇函数如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.偶函数如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.【解题方法点拨】①如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;②若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;③已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f(x),当x>

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论