版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页新疆现代职业技术学院
《三维影像设计Ⅰ》2023-2024学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的动作识别是一个具有挑战性的任务。假设要识别一段体育比赛视频中的运动员动作,以下关于特征选择的方法,哪一项是不太可行的?()A.提取运动员的身体轮廓和关节位置作为特征B.仅使用视频的音频信息来判断运动员的动作C.计算视频帧之间的光流变化作为动作特征D.结合空间和时间维度的特征来描述动作2、在计算机视觉的图像检索任务中,根据用户提供的图像或特征在数据库中查找相似的图像。假设要从一个大型图像库中找到与给定图像相似的图片,以下关于图像检索方法的描述,正确的是:()A.基于图像的颜色和纹理特征进行检索能够满足所有的检索需求B.深度学习中的卷积神经网络提取的特征在图像检索中不如手工设计的特征有效C.考虑图像的语义信息和高层特征可以提高图像检索的准确性和相关性D.图像检索的速度和效率不受数据库大小和特征维度的影响3、在一个基于计算机视觉的机器人导航系统中,需要根据环境图像来规划机器人的路径。以下哪种视觉导航方法可能更适合复杂动态环境?()A.基于地图的导航B.基于视觉里程计的导航C.基于深度学习的端到端导航D.以上都是4、在计算机视觉的应用于自动驾驶领域,需要实时检测道路上的交通标志和标线。假设车辆在高速行驶中,以下哪种技术能够快速准确地检测到各种交通标志,并且对光照变化和遮挡具有较强的鲁棒性?()A.基于颜色和形状特征的检测方法B.基于深度学习的检测方法,结合多尺度特征C.基于边缘检测和形态学操作的方法D.基于模板匹配和特征点匹配的方法5、在计算机视觉的图像超分辨率任务中,假设要将一张低分辨率图像恢复为高分辨率图像。以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的方法简单快速,但恢复出的图像细节不够清晰B.基于深度学习的方法能够生成逼真的高分辨率图像,但需要大量的训练数据和计算资源C.图像超分辨率技术可以无限制地提高图像的分辨率,不受硬件限制D.所有的图像超分辨率方法都能够完全恢复出原始高分辨率图像的所有信息6、在计算机视觉的三维重建任务中,需要从多视角的图像中恢复物体的三维形状。假设我们有一组从不同角度拍摄的建筑物图像,以下哪种方法常用于从这些图像中重建建筑物的三维模型?()A.立体匹配方法B.结构光方法C.运动恢复结构(SFM)D.基于投影的方法7、计算机视觉中的光流估计是计算图像中像素的运动信息。以下关于光流估计的叙述,不正确的是()A.光流估计可以用于视频中的运动分析、目标跟踪和动作识别等任务B.基于深度学习的光流估计方法在精度和速度上都有了很大的提升C.光流估计只对匀速运动的物体有效,对于复杂的非匀速运动估计不准确D.光流估计的结果可以为后续的计算机视觉任务提供重要的运动线索8、在计算机视觉的图像修复任务中,假设要填补图像中缺失或损坏的部分。以下哪种方法可能更有效地恢复图像的完整性和真实性?()A.基于扩散的修复方法B.基于深度学习的图像修复模型,如ContextEncoderC.用固定的图案或颜色填充缺失部分D.不进行修复,保留图像的缺失部分9、图像增强是为了改善图像的质量和视觉效果。假设我们有一张由于光照不足而显得暗淡的图像,需要对其进行增强以突出细节。以下哪种图像增强方法可以有效地提高图像的对比度,同时避免过度增强导致的噪声放大?()A.直方图均衡化B.灰度变换C.锐化滤波D.中值滤波10、在计算机视觉的场景理解任务中,假设要理解一个室内场景的布局和功能,例如判断是办公室还是客厅。以下哪种信息对于准确理解场景是至关重要的?()A.物体的类别和位置B.图像的颜色分布C.图像的拍摄角度D.随机选择图像中的部分区域进行分析11、计算机视觉中的光流估计用于计算图像中像素的运动信息。假设要估计一段视频中物体的运动速度和方向,以下关于光流估计方法的描述,正确的是:()A.传统的基于梯度的光流估计方法在复杂场景中能够准确计算光流B.深度学习中的光流估计网络不需要大量的标注数据进行训练C.光流估计的结果不受图像噪声和模糊的影响D.结合时空信息的深度学习光流估计方法能够提高估计的准确性和鲁棒性12、计算机视觉中的特征提取是非常关键的步骤。假设要从一组图像中提取具有代表性的特征,以下关于特征提取方法的描述,正确的是:()A.手工设计的特征,如SIFT和HOG,在任何情况下都比深度学习自动学习的特征更有效B.深度学习中的卷积神经网络能够自动学习到图像的多层次特征,具有很强的表达能力C.特征提取的结果对后续的图像分类和目标检测任务没有影响D.特征提取只需要考虑图像的局部信息,全局信息不重要13、在计算机视觉的三维重建任务中,假设要从一组二维图像恢复出物体的三维结构。以下关于三维重建方法的描述,正确的是:()A.基于立体视觉的方法需要多视角的图像,并且对相机的标定精度要求不高B.结构光方法能够快速准确地获取物体表面的三维信息,但对环境光敏感C.从运动中恢复结构(SfM)方法只适用于静态场景,无法处理动态物体D.所有的三维重建方法都能够生成高精度的、完整的物体三维模型14、计算机视觉中的人脸识别技术应用广泛。假设要在一个门禁系统中实现准确的人脸识别,以下关于人脸识别方法的描述,正确的是:()A.基于几何特征的人脸识别方法对姿态和光照变化具有很强的鲁棒性B.基于模板匹配的方法能够处理大规模的人脸数据库,并且识别速度快C.深度学习中的卷积神经网络在人脸识别中能够学习到更具判别性的特征,但容易受到数据偏差的影响D.人脸识别系统一旦训练完成,就不需要更新和优化,能够一直保持高准确率15、在计算机视觉中,图像超分辨率重建是提高图像分辨率和质量的技术。以下关于图像超分辨率重建的叙述,不正确的是()A.图像超分辨率重建可以通过插值、基于模型的方法或深度学习方法来实现B.深度学习方法在图像超分辨率重建中能够生成更清晰、逼真的细节C.图像超分辨率重建在医学图像、卫星图像和监控图像等领域有重要的应用D.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制16、计算机视觉在医疗手术中的应用可以为医生提供辅助和支持。假设在一个微创手术中,计算机视觉用于引导手术器械。以下关于计算机视觉在医疗手术中的描述,哪一项是不正确的?()A.可以通过实时图像分析,为医生提供器械与组织的相对位置和姿态信息B.能够对手术区域进行精准的分割和标注,帮助医生识别关键结构C.计算机视觉在医疗手术中的应用已经非常成熟,不存在任何风险和误差D.可以与机器人手术系统结合,实现更精确和稳定的手术操作17、计算机视觉中的语义分割旨在为图像中的每个像素分配一个类别标签。假设要对医学影像中的肿瘤区域进行语义分割,以下关于模型评估指标的选择,哪一项是最为关键的?()A.准确率,即正确分类的像素比例B.召回率,即正确分割出肿瘤像素的比例C.F1分数,综合考虑准确率和召回率D.平均交并比(MIoU),衡量分割结果与真实标签的重合程度18、在计算机视觉的遥感图像分析中,假设要从卫星遥感图像中提取土地利用信息,以下哪种技术可能对区分不同类型的土地覆盖有帮助?()A.高光谱分析B.纹理分析C.形状分析D.以上都有可能19、在计算机视觉的应用中,人脸识别是一个常见的任务。假设一个公司要建立一个门禁系统,通过人脸识别来允许员工进入。为了提高人脸识别的准确性和鲁棒性,以下哪种技术通常会被采用?()A.基于几何特征的人脸识别B.基于模板匹配的人脸识别C.基于深度学习的人脸识别,结合多模态数据D.基于颜色特征的人脸识别20、计算机视觉中的视频目标跟踪中,假设目标在跟踪过程中发生了严重的形变。以下关于处理目标形变的方法描述,正确的是:()A.基于模板匹配的跟踪方法能够自适应地处理目标形变,保持跟踪的准确性B.特征点跟踪方法对目标形变不敏感,在这种情况下仍然能够可靠跟踪C.深度学习中的孪生网络在目标形变时容易丢失目标,无法继续跟踪D.结合多种特征和模型更新策略可以提高对目标形变的跟踪鲁棒性21、当利用计算机视觉进行图像超分辨率重建任务,将低分辨率图像恢复为高分辨率图像,以下哪种深度学习模型可能在重建效果上表现出色?()A.SRCNNB.ESPCNC.DRCND.以上都是22、计算机视觉中的视觉跟踪在监控、机器人导航等领域有广泛应用。假设一个机器人需要跟踪一个移动的物体,同时适应物体的外观变化和环境干扰。以下哪种视觉跟踪方法能够提供较好的长期跟踪性能和鲁棒性?()A.基于核相关滤波的跟踪方法B.基于深度学习的孪生网络跟踪方法C.基于粒子滤波和特征匹配的跟踪方法D.基于背景减除和运动估计的跟踪方法23、在计算机视觉的发展中,模型的可解释性是一个重要的研究方向。以下关于模型可解释性的描述,不准确的是()A.模型可解释性旨在理解模型是如何做出决策和生成输出的B.可解释性对于建立用户对模型的信任和确保模型的公正性具有重要意义C.一些可视化技术,如特征图可视化和类激活映射,可以帮助解释模型的决策过程D.目前的计算机视觉模型都具有良好的可解释性,能够清晰地解释其决策依据24、计算机视觉中的目标重识别任务旨在在不同的摄像头视角中识别出同一目标。假设要在一个大型商场的多个摄像头中寻找一个特定的人物。以下关于目标重识别的描述,哪一项是不准确的?()A.可以通过提取目标的特征,如颜色、形状和纹理,来进行重识别B.深度学习中的特征学习方法能够提高目标重识别的准确率C.目标重识别不受摄像头视角、光照和人物姿态变化的影响D.可以通过建立目标的特征库,快速在多个摄像头中进行匹配和搜索25、计算机视觉中的动作识别用于分析视频中的人体动作。假设要识别一段舞蹈视频中的动作类别。以下关于动作识别方法的描述,哪一项是不准确的?()A.可以基于时空特征提取的方法,捕捉动作在时间和空间上的变化B.深度学习中的循环神经网络(RNN)和长短时记忆网络(LSTM)适用于动作序列的分析C.动作识别只需要关注人体的关节位置,不需要考虑人体的整体形态D.多模态数据融合,如结合音频和视频信息,可以提高动作识别的准确率二、简答题(本大题共4个小题,共20分)1、(本题5分)简述图像的直方图规定化方法。2、(本题5分)描述计算机视觉在影视制作中的应用。3、(本题5分)计算机视觉中如何进行图像的去噪处理?4、(本题5分)描述计算机视觉在桥梁检测中的应用。三、分析题(本大题共5个小题,共25分)1、(本题5分)某食品品牌的包装设计强调天然和健康,运用清新的色彩和简洁的图案。请探讨此设计在传递产品理念、吸引消费者、建立品牌信任方面的策略,以及如何在货架上脱颖而出。2、(本题5分)某科技产品发布会的邀请函设计独具匠心。请研究邀请函在材质选择、造型设计、活动信息传达上的创意,以及如何激发受邀者的兴趣。3、(本题5分)研究某游戏的界面设计,分析设计师如何通过色彩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三只羊过桥的故事解读
- 81kV低压预分支电力电缆专用技术规范
- 污水处理产业区域布局-洞察分析
- 牲畜运输合同
- 二零二五年度肥料市场拓展与品牌授权合作合同3篇
- 健身行业训练方法总结
- 安妮日记观后感
- 2024年跨区域数据传输协议
- 2025年度随车吊租赁与隧道施工服务合同3篇
- 网络平台风险评估方法-洞察分析
- 广告宣传物料广告宣传物料配送方案
- 2024年长春医学高等专科学校单招职业适应性测试题库及答案解析
- 品质部组织架构图构
- 解析几何-2023上海市高三数学一模汇编【教师版】
- 项目维修维保方案
- 上海市浦东新区2023-2024学年一年级上学期期末考试数学试题
- 插图在小学英语口语教学中的运用
- 前列腺增生药物治疗
- 人工智能知识图谱(归纳导图)
- 滴滴补贴方案
- 民宿建筑设计方案
评论
0/150
提交评论