版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省巢湖第一中学2025届高考考前提分数学仿真卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,既是偶函数又在区间上单调递增的是()A. B. C. D.2.ΔABC中,如果lgcosA=lgsinA.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形3.设,是非零向量,若对于任意的,都有成立,则A. B. C. D.4.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.5.设是虚数单位,,,则()A. B. C.1 D.26.已知复数满足,则()A. B. C. D.7.设是等差数列的前n项和,且,则()A. B. C.1 D.28.在直角梯形中,,,,,点为上一点,且,当的值最大时,()A. B.2 C. D.9.若直线与圆相交所得弦长为,则()A.1 B.2 C. D.310.已知集合,集合,则()A. B. C. D.11.已知平行于轴的直线分别交曲线于两点,则的最小值为()A. B. C. D.12.在中,分别为所对的边,若函数有极值点,则的范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中含的系数为__________.(用数字填写答案)14.函数的定义域为______.15.如图,在△ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为______.16.函数的图象向右平移个单位后,与函数的图象重合,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)购买一辆某品牌新能源汽车,在行驶三年后,政府将给予适当金额的购车补贴.某调研机构对拟购买该品牌汽车的消费者,就购车补贴金额的心理预期值进行了抽样调查,其样本频率分布直方图如图所示.(1)估计拟购买该品牌汽车的消费群体对购车补贴金额的心理预期值的方差(同一组中的数据用该组区间的中点值作代表);(2)将频率视为概率,从拟购买该品牌汽车的消费群体中随机抽取人,记对购车补贴金额的心理预期值高于万元的人数为,求的分布列和数学期望;(3)统计最近个月该品牌汽车的市场销售量,得其频数分布表如下:月份销售量(万辆)试预计该品牌汽车在年月份的销售量约为多少万辆?附:对于一组样本数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.18.(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,,求直线的斜率.19.(12分)如图,⊙的直径的延长线与弦的延长线相交于点,为⊙上一点,,交于点.求证:~.20.(12分)已知,,分别为内角,,的对边,若同时满足下列四个条件中的三个:①;②;③;④.(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应的面积.(若所选条件出现多种可能,则按计算的第一种可能计分)21.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.22.(10分)已知函数.(1)讨论的单调性;(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.2、B【解析】
化简得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,结合0<A<π,可求A=π【详解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故选:B【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.3、D【解析】
画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.4、C【解析】
由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.【详解】解:由,翻折后得到,又,则面,可知.又因为,则面,于是,因此三棱锥外接球球心是的中点.计算可知,则外接球半径为1,从而外接球表面积为.故选:C.【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.5、C【解析】
由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:,,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把当成进行运算.6、A【解析】
根据复数的运算法则,可得,然后利用复数模的概念,可得结果.【详解】由题可知:由,所以所以故选:A【点睛】本题主要考查复数的运算,考验计算,属基础题.7、C【解析】
利用等差数列的性质化简已知条件,求得的值.【详解】由于等差数列满足,所以,,.故选:C【点睛】本小题主要考查等差数列的性质,属于基础题.8、B【解析】
由题,可求出,所以,根据共线定理,设,利用向量三角形法则求出,结合题给,得出,进而得出,最后利用二次函数求出的最大值,即可求出.【详解】由题意,直角梯形中,,,,,可求得,所以·∵点在线段上,设,则,即,又因为所以,所以,当时,等号成立.所以.故选:B.【点睛】本题考查平面向量线性运算中的加法运算、向量共线定理,以及运用二次函数求最值,考查转化思想和解题能力.9、A【解析】
将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.10、C【解析】
求出集合的等价条件,利用交集的定义进行求解即可.【详解】解:∵,,∴,故选:C.【点睛】本题主要考查了对数的定义域与指数不等式的求解以及集合的基本运算,属于基础题.11、A【解析】
设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值.【详解】解:设直线为,则,,而满足,那么设,则,函数在上单调递减,在上单调递增,所以故选:.【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.12、D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意得,二项式展开式的通项为,令,则,所以得系数为.14、【解析】
对数函数的定义域需满足真数大于0,再由指数型不等式求解出解集即可.【详解】对函数有意义,即.故答案为:【点睛】本题考查求对数函数的定义域,还考查了指数型不等式求解,属于基础题.15、【解析】试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是.考点:向量的运算,基本不等式.【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案.16、【解析】
根据函数图象的平移变换公式求得变换后的函数解析式,再利用诱导公式求得满足的方程,结合题中的范围即可求解.【详解】由函数图象的平移变换公式可得,函数的图象向右平移个单位后,得到的函数解析式为,因为函数,所以函数与函数的图象重合,所以,即,因为,所以.故答案为:【点睛】本题考查函数图象的平移变换和三角函数的诱导公式;诱导公式的灵活运用是求解本题的关键;属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1.7;(2),见解析;(2)2.【解析】
(1)平均数的估计值为每个小矩形组中值乘以小矩形面积的和;(2)易得,由二项分布列的期望公式计算;(3)利用所给公式计算出回归直线即可解决.【详解】(1)由频率分布直方图可知,消费群体对购车补贴金额的心理预期值的平均数的估计值为,所以方差的估计值为;(2)由频率分布直方图可知,消费群体对购车补贴金额的心理预期值高于3万元的频率为,则,所以的分布列为,数学期望;(3)将2018年11月至2019年3月的月份数依次编号为1,2,3,4,5,记,,,,,,由散点图可知,5组样本数据呈线性相关关系,因为,,,,则,,所以回归直线方程为,当时,,预计该品牌汽车在年月份的销售量约为2万辆.【点睛】本题考查平均数、方差的估计值、二项分布列及其期望、线性回归直线方程及其应用,是一个概率与统计的综合题,本题是一道中档题.18、(1)(2)0【解析】
(1)根据题意,设直线,与联立,得,再由弦长公式,求解.(2)设,根据直线的斜率为1,则,得到,再由,所以线段中点的纵坐标为,然后直线的方程与直线的方程联立解得交点H的纵坐标,说明直线轴,直线的斜率为0.【详解】(1)依题意,,则直线,联立得;设,则,解得,故抛物线的方程为.(2),因为直线的斜率为1,则,所以,因为,所以线段中点的纵坐标为.直线的方程为,即①直线的方程为,即②联立①②解得即点的纵坐标为,即直线轴,故直线的斜率为0.如果直线的斜率不存在,结论也显然成立,综上所述,直线的斜率为0.【点睛】本题考查抛物线的方程、直线与抛物线的位置关系,还考查推理论证能力以及化归与转化思想,属于中档题.19、证明见解析【解析】
根据相似三角形的判定定理,已知两个三角形有公共角,题中未给出线段比例关系,故可根据判定定理一需找到另外一组相等角,结合平面几何的知识证得即可.【详解】证明:∵,所以,又因为,所以.在与中,,,故~.【点睛】本题考查平面几何中同弧所对的圆心角与圆周角的关系、相似三角形的判定定理;考查逻辑推理能力和数形结合思想;分析图形,找出角与角之间的关系是证明本题的关键;属于基础题.20、(1)①,③,④或②,③,④;(2).【解析】
(1)由①可求得的值,由②可求出角的值,结合题意得出,推出矛盾,可得出①②不能同时成为的条件,由此可得出结论;(2)在符合条件的两组三角形中利用余弦定理和正弦定理求出对应的边和角,然后利用三角形的面积公式可求出的面积.【详解】(1)由①得,,所以,由②得,,解得或(舍),所以,因为,且,所以,所以,矛盾.所以不能同时满足①,②.故满足①,③,④或②,③,④;(2)若满足①,③,④,因为,所以,即.解得.所以的面积.若满足②,③,④由正弦定理,即,解得,所以,所以的面积.【点睛】本题考查三角形能否成立的判断,同时也考查了利用正弦定理和余弦定理解三角形,以及三角形面积的计算,要结合三角形已知元素类型合理选择正弦定理或余弦定理解三角形,考查运算求解能力,属于中等题.21、(1);(2)最小值为,此时【解析】
(1)消去曲线参数方程的参数,求得曲线的普通方程.利用极坐标和直角坐标相互转化公式,求得曲线的直角坐标方程.(2)设出的坐标,结合点到直线的距离公式以及三角函数最值的求法,求得的最小值及此时点的坐标.【详解】(1)消去得,曲线的普通方程是:;把,代入得,曲线的直角坐标方程是(2)设,的最小值就是点到直线的最小距离.设在时,,是最小值,此时,所以,所求最小值为,此时【点睛】本小题主要考查参数方程化为普通方程,考查极坐标方程转化为直角坐标方程,考查利用圆锥曲线的参数求最值,属于中档题.22、(1)当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)证明见解析【解析】
(1)对求导,分,,进行讨论,可得的单调性;(2)在定义域内是是增函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年环保合作协议:固体废物处理与清理
- 2024年玉石交易协议书3篇
- 2024年设备购买维修合同
- 2024年适用版债务承担担保协议样本版B版
- 2024年电力线路故障抢修服务合同
- 2024年版权许可使用合同(含音乐、影视、文学作品)
- 2024年门卫人员劳务派遣及管理服务合同3篇
- 2024年版权许可使用合同(含续约条款)
- 2024年智能制造企业研发人员劳动合同范本3篇
- 2024年联合营销协议
- 西安市莲湖区2022-2023学年七年级上学期期末语文试题【带答案】
- JBT 14543-2024 无刷稳速直流电动机技术规范(正式版)
- 动静脉内瘘的物理学检查
- 中国麻辣烫行业市场发展前景研究报告-智研咨询发布
- 【视神经脊髓炎谱系疾病的探究进展文献综述3800字】
- 思想道德与法治(海南大学)智慧树知到期末考试答案章节答案2024年海南大学
- 2022-2023学年湖南省永州市道县湘少版(三起)三年级上册期末考试英语试卷【含答案】
- 探索2-个人信息资源的防护措施-课件-苏科版(2023)初中信息技术七年级下册
- 2023届湖南省52校高三年级上册11月联考英语试卷及答案
- 植树问题专项讲义(五大类型+方法+练习+答案)六年级数学小升初总复习
- 部编版小学语文年级一年级上册第一单元教学课件
评论
0/150
提交评论