中考数学二轮复习冲刺第05讲一元二次方程、分式方程的解法及应用【挑战中考满分模拟练】(解析版)_第1页
中考数学二轮复习冲刺第05讲一元二次方程、分式方程的解法及应用【挑战中考满分模拟练】(解析版)_第2页
中考数学二轮复习冲刺第05讲一元二次方程、分式方程的解法及应用【挑战中考满分模拟练】(解析版)_第3页
中考数学二轮复习冲刺第05讲一元二次方程、分式方程的解法及应用【挑战中考满分模拟练】(解析版)_第4页
中考数学二轮复习冲刺第05讲一元二次方程、分式方程的解法及应用【挑战中考满分模拟练】(解析版)_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第05讲一元二次方程、分式方程的解法及应用【挑战中考满分模拟练】一.根的判别式(共1小题)1.(2022•天宁区校级二模)在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是0<a<9.【分析】(1)把x=2,y=﹣4;x=0,y=﹣1代入y=|kx﹣3|+b求解即可;(2)由y=|﹣3|﹣4,得出,再根据函数的图象写出函数的性质;(3)根据题意画出图象,再根据图象得出不等式的解集;(4)根据题意画出图象,再根据方程|x2﹣6x|﹣a=0有四个不相等的实数根,得出结果.【解答】解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,解得,∴这个函数的表达式是y=|﹣3|﹣4;(2)∵y=|﹣3|﹣4,∴,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣x﹣1过点(0,﹣1)和点(﹣2,2),该函数的图象如图所示,性质:当x>2时,y的值随x的增大而增大;(3)由函数的图象可得,不等式的解集是:1≤x≤4;(4)由|x2﹣6x|﹣a=0得a=|x2﹣6x|,作出y=|x2﹣6x|的图象,由图象可知,要使方程|x2﹣6x|﹣a=0有四个不相等实数根,则0<a<9,故答案为:0<a<9.【点评】本题考查了一次函数的图象和性质及一元一次不等式的应用,解题的关键是根据题意准确画出图象.二.根与系数的关系(共2小题)2.(2022•随县一模)已知:m、n是方程x2+2x﹣1=0的两根,则(m2+3m+3)(n2+3n+3)=7.【分析】根据一元二次方程的解和根与系数的关系得出m+n=﹣2,mn=﹣1,m2+2m﹣1=0,n2+2n﹣1=0,变形后代入,即可求出答案.【解答】解:∵m、n是方程x2+2x﹣1=0的两根,∴m+n=﹣2,mn=﹣1,m2+2m﹣1=0,n2+2n﹣1=0,∴(m2+3m+3)(n2+3n+3)=(m2+2m﹣1+m+4)(n2+2n﹣1+n+4)=(m+4)(n+4)=mn+4(m+n)+16=﹣1+4×(﹣2)+16=7,故答案为:7.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=,也考查了一元二次方程的解.3.(2022•黄石港区校级模拟)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出Δ=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1•x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴Δ=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出Δ=20﹣4m≥0;(2)分x2≥0和x2<0两种情况求出x1、x2的值.三.一元二次方程的应用(共10小题)4.(2022•江岸区校级模拟)某公司以3万元/吨的价格收购20吨某种水果后,分成A,B两类(A类直接销售,B类深加工成果酱后再销售),并全部售出:A类水果的销售价格y(单位:万元/吨)与销售数量x(单位:吨)之间的函数关系是y=﹣x+13.B类水果深加工总费用m(单位:万元)与加工数量n(单位:吨)之间的函数关系是m=12+3n,B类果酱每吨利润率(不考虑深加工费用)是A类水果每吨利润率的2倍,按此标准定B类的销售价格.注:总利润=售价﹣总成本;利润率=(售价﹣进价)÷进价.(1)设其中A类水果有x吨,用含x的代数式表示下列各量.①B类果酱有(20﹣x)吨;②A类水果所获得总利润为(﹣x2+10x)万元;③B类果酱所获得总利润为(2x2﹣57x+328)万元.(2)若A类水果比B类果酱获得总利润低24万元,问A,B两类水果各有多少吨?(3)若A,B两类水果获得总利润和不低于48万元,直接写出x的取值范围.【分析】(1)①根据题意可得答案;②根据总利润=每吨的利润×数量可得答案;③根据总利润=总售价﹣总费用可得答案;(2)根据题意列出方程,(2x2﹣57x+328)﹣(﹣x2+10x)=24,解方程可得答案;(3)设两类水果总利润的和为w万元,得出w关于x的关系式,再根据二次函数的性质可得答案.【解答】解:(1)①B类果酱有(20﹣x)吨;故答案为:(20﹣x);②A类水果所获得总利润为(﹣x+13﹣3)x=﹣x2+10x,故答案为:(﹣x2+10x);③设B类水果每吨销售价格为z元,∵A类水果每吨所获利润为(﹣x+10)元,根据题意可知,=2×,解得z=﹣2x+23,∴B类水果所获总利润为:(﹣2x+23﹣3)(20﹣x)﹣[12+3(20﹣x)]=2x2﹣57x+328;故答案为:(2x2﹣57x+328);(2)由题意得,(2x2﹣57x+328)﹣(﹣x2+10x)=24,解得x1=16(舍),x2=,∴20﹣=(吨),答:A类水果有吨,B类水果有吨;(3)设两类水果总利润的和为w万元,则w=(2x2﹣57x+328)+(﹣x2+10x)=x2﹣47x+328,∵w≥48,∴x2﹣47x+328≥48,∴0<x≤7或x≥40(舍),∴x的取值范围为0<x≤7.【点评】本题主要考查二次函数的实际应用.解题关键是理清售价、成本、利润三者之间的关系.5.(2022•裕安区校级一模)平安路上,多“盔”有你,在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出100顶.商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价2元,平均每周可多售出40顶.(1)若该商店希望平均每周获利4000元,则每顶头盔应降价多少?(2)商店降价销售后,决定每销售1顶头盔就向某慈善机构捐赠m元(m为整数,且1≤m≤5),帮助做“交通安全”宣传.捐赠后发现,该商店每周销售这种商品的利润仍随售价的增大而增大,求m的值.【分析】(1)设每顶头盔应降价x元,则每顶头盔的销售利润为(68﹣x﹣40)元,平均每周的销售量为(100+20x)顶,根据每周销售头盔获得的利润=每顶头盔的销售利润×平均每周的销售量,即可得出关于x的一元二次方程,解之即可得出x的值,结合每顶售价不高于58元,即可确定x的值;(2)设每周扣除捐赠后可获得利润为w元,每顶头盔售价为a元,利用每周销售头盔获得的利润=每顶头盔的销售利润×平均每周的销售量,即可得出w关于a的函数关系式,利用二次函数的性质可得出关于m的一元一次不等式,解之即可得出m的取值范围,再结合1≤m<5且m为整数,即可得出m的值.【解答】解:(1)设每顶头盔应降价x元,则每顶头盔的销售利润为(68﹣x﹣40)元,平均每周的销售量为(100+20x)顶,依题意得:(68﹣x﹣40)(100+20x)=4000,整理得:x2﹣23x+60=0,解得:x1=3,x2=20,∵68﹣x≤58,∴x≥10,∴x=20.答:每顶头盔应降价20元;(2)设每周扣除捐赠后可获得利润为w元,每顶头盔售价为a元,依题意得:w=[100+20(68﹣a)](a﹣40﹣m)=﹣20a2+(20m+2260)a﹣1460(40+m).∵抛物线的对称轴为a=,开口向下,当a≤58时,利润仍随售价的增大而增大,∴≥58,解得:m≥3,又∵1≤m≤5,且m为整数,∴m=3或m=4或m=5.【点评】本题考查了一元二次方程的应用以及二次函数的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,找出w关于a的函数关系式.6.(2022•常州一模)某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值.【分析】(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;(2)A社区的知晓人数+B社区的知晓人数=7.5×76%,据此列出关于m的方程并解答.【解答】解:(1)设A社区居民人口有x万人,则B社区有(7.5﹣x)万人,依题意得:7.5﹣x≤2x,解得x≥2.5.即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1×(1+m%)×(1+2m%)=7.5×76%设m%=a,方程可化为:1.2(1+a)2+(1+a)(1+2a)=5.7化简得:32a2+54a﹣35=0解得a=0.5或a=﹣(舍)∴m=50答:m的值为50.【点评】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.7.(2022•法库县模拟)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?【分析】(1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【解答】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.8.(2022•台儿庄区一模)如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动,当一个点到达终点时,另一个点也随即停止运动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出△PQB的面积为,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【解答】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=(6﹣t)cm,QB=2t(cm),QE=t(cm).根据题意,•(6﹣t)•t=4.t2﹣6t+8=0.t1=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点评】本题考查了一元二次方程的运用,注意求得的值的取舍问题.9.(2022•盂县一模)如图,△ABC中,∠C=90°,AC=8cm,BC=4cm,一动点P从C出发沿着CB边以1cm/s的速度运动,另一动点Q从A出发沿着AC边以2cm/s的速度运动,P,Q两点同时出发,运动时间为t(s).(1)当t为几秒时,△PCQ的面积是△ABC面积的?(2)△PCQ的面积能否为△ABC面积的一半?若能,求出t的值;若不能,说明理由.【分析】(1)根据三角形的面积公式可以求出时间t;(2)由等量关系S△PCQ=S△ABC列方程求出t的值,但方程无解.【解答】解:(1)∵S△PCQ=t(8﹣2t),S△ABC=×4×8=16,∴t(8﹣2t)=16×,整理得t2﹣4t+4=0,解得t=2.答:当t=2s时△PCQ的面积为△ABC面积的;(2)当S△PCQ=S△ABC时,t(8﹣2t)=16×,整理得t2﹣4t+8=0,Δ=(﹣4)2﹣4×1×8=﹣16<0,∴此方程没有实数根,∴△PCQ的面积不可能是△ABC面积的一半.【点评】考查三角形的面积公式及解一元二次方程,将数学知识运用在实际问题中.10.(2022•大连模拟)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分枝,主干,支干和小分枝的总数是73,每个支干长出多少分枝?【分析】设主干长出x个支干,每个支干又长出x个小分支,得方程1+x+x2=73,整理求解即可.【解答】解:由题意得1+x+x•x=73,即x2+x﹣72=0,∴(x+9)(x﹣8)=0,解得x1=8,x2=﹣9(舍去)答:每个支干长出8个小分支.【点评】本题设长为x个支干,把小分枝用x2表示是关键.11.(2022•庐阳区校级四模)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?【分析】(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为a,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:=,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.【点评】本题考查了一元二次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,列出分式方程;(2)找准等量关系,列出一元二次方程.12.(2022•永州模拟)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠?【分析】(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据2015年及2017年该品牌足球的单价,即可得出关于x的一元二次方程,解之取其小于1的值即可得出结论;(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用,比较后即可得出结论.【解答】解:(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据题意得:200×(1﹣x)2=162,解得:x=0.1=10%或x=1.9(舍去).答:2015年到2017年该品牌足球单价平均每年降低的百分率为10%.(2)100×=≈90.91(个),在A商城需要的费用为162×91=14742(元),在B商城需要的费用为162×100×=14580(元).14742>14580.答:去B商场购买足球更优惠.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)根据2015年及2017年该品牌足球的单价,列出关于x的一元二次方程;(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用.13.(2022•祁阳县校级模拟)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为2.6(1+x)2万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.【分析】(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可【解答】解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.【点评】本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.四.高次方程(共1小题)14.(2022•扬州一模)已知x1、x2、x3为方程x3+3x2﹣9x﹣4=0的三个实数根,则下列结论一定正确的是()A.x1x2x3<0 B.x1+x2﹣x3>0 C.x1﹣x2﹣x3>0 D.x1+x2+x3<0【分析】由x3+3x2﹣9x﹣4=0可得x2+3x﹣9=则x1、x2、x3可以看作是抛物线y=x2+3x﹣9与反比例函数y=的三个交点的横坐标,由此画出函数图象求解即可.【解答】解:∵x3+3x2﹣9x﹣4=0,当x=0时,﹣4≠0,∴x2+3x﹣9﹣=0,∴x1、x2、x3可以看作是抛物线y=x2+3x﹣9与反比例函数y=的三个交点的横坐标,由函数图象可知x1x2x3>0,x1+x2+x3<0,根据已知条件无法判定x1+x2﹣x3>0,x1﹣x2﹣x3>0,故选:D.【点评】本题主要考查了反比例函数与二次函数综合,正确理解题意得到x1、x2、x3可以看作是抛物线y=x2+3x﹣9与反比例函数y=的三个交点的横坐标是解题的关键.五.无理方程(共1小题)15.(2022•揭阳一模)小明用下面的方法求出方程2﹣3=0的解,方程换元法得新方程解新方程检验求原方程的解2﹣3=0令=t,则2t﹣3=0t=t=>0,所以x=请你仿照他的方法求出下面方程的解,并写出你的解答过程.解方程:x+2﹣3=0.【分析】把方程中的无理数变成有理数计算,后再解无理数,从而解得.【解答】解:x+2﹣3=0,令,则t2+2t﹣3=0,解得:t1=1,t2=﹣3(不合题意舍去),可得:,解得:x=1.【点评】本题考查无理方程的计算,对无理方程部分设定未知数,求解后而最终求得未知数.六.分式方程的解(共2小题)16.(2022•渝中区校级模拟)已知关于x的一元一次不等式组的解集为x>2,且关于y的分式方程=1﹣的解为正整数,则所有满足条件的所有整数a的和为()A.2 B.5 C.6 D.9【分析】利用不等式组的解为x>2,确定a的取值范围,解分式方程,当解为正整数时求得a值,将符合条件的a值相加即可得出结论.【解答】解:∵不等式组的解集为x>2,∴a﹣2≤2.∴a≤4.关于y的分式方程=1﹣的解为y=.∵y=3是原分式方程的增根,∴≠3.∴a≠3.∵关于y的分式方程=1﹣的解为正整数,∴为正整数.∴a=2,4,7.∵a≤4,∴a=2,4.∴所有满足条件的所有整数a的和为:2+4=6.故选:C.【点评】本题主要考查了解一元一次不等式组,分式方程的解,注意解分式方程可能产生增根是解题的关键.17.(2022•恩施市模拟)已知关于x的分式方程的解是非负数,则m的取值范围是()A.m≤5且m≠﹣3 B.m≥5且m≠﹣3 C.m≤5且m≠3 D.m≥5且m≠3【分析】首先对原分式方程变形,其次解出分式方程的解,再根据分式方程解是非负数,最简公分母不为0,列不等式,求出公共的解集即可.【解答】解:原分式方程可化为:﹣2=,去分母,得1﹣m﹣2(x﹣1)=﹣2,解得x=,∵分式方程解是非负数,∴≥0,且≠1,∴m的取值范围是:m≤5且m≠3,故选:C.【点评】本题考查分式方程的解、解一元一次不等式,掌握用含m的式子表示方程的解,根据方程的解为非负数,x﹣1≠0,列不等式组是解题关键.七.分式方程的应用(共26小题)18.(2022•江津区一模)2021年11月2日,重庆市九龙坡区、长寿区分别新增1例新冠本土确诊.当疫情出现后,各级政府及有关部门高度重视,坚决阻断疫情传播.开州区赵家工业园区一家民营公司为了防疫需要,引进一条口罩生产线生产口罩,该产品有三种型号,通过市场调研后,按三种型号受消费者喜爱的程度分别对A型、B型、C型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个月的经营后,发现C型产品的销量占总销量的,且三种型号的总利润率为35%.第二个月,公司决定对A型产品进行升级,升级后A型产品的成本提高了25%,销量提高了20%;B型、C型产品的销量和成本均不变,且三种产品在第二个月成本基础上分别加价20%,30%,50%出售,则第二个月的总利润率为36%.【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号口罩原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得;第二个季度A产品成本为(1+25%)a=,B、C的成本仍为a,A产品销量为(1+20%)x=,B产品销量为y,C产品销量为z,则可表示第二个月的总利润率.【解答】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:,解得:,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=,B、C的成本仍为a,A产品销量为(1+20%)x=,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:===36%,故答案为:36%.【点评】本题考查了利用三元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.19.(2022•牡丹江二模)某商场准备购进A,B两款净水器,每台A款净水器比B款净水器的进价少600元,用36000元购进A款净水器的台数是用27000元购进B款净水器台数的2倍,A,B两款净水器每台售价分别是1350元、2100元.请解答下列问题:(1)A,B两款净水器每台进价各是多少元?(2)若该商场用6万元资金全部用于购进A和B两款净水器,购进B款净水器不超过8台,设购进A款净水器a台,则该商场有几种进货方案?(3)在(2)条件下,为促进销售,商场推出每购买一台净水器可抽奖一次,中奖顾客赠送同款净水器滤芯一个.A,B两款净水器每个滤芯的进价分别是400元、500元.如果这批净水器全部售出,除去奖品的费用后仍获利5250元,那么两款净水器滤芯共赠送多少个?请直接写出答案.【分析】(1)设A款净水器每台x元,B款净水器每台(x+600)元,根据用36000元购进A款净水器的台数是用27000元购进B款净水器台数的2倍,列出分数方程,解方程即可;(2)由题意可知购进A款净水器a台,则购进BA款净水器台,根据购进B款净水器不超过8台,列出不等式,求不等式的整数解即可;(3)将(2)中方案代入进行求解即可.【解答】解:(1)设A款净水器每台x元,B款净水器每台(x+600)元,根据题意得,=2×,解得:x=1200,经检验x=1200是原方程的根,此时x+600=1800,答:A款净水器每台进价是1200元,B款净水器每台进价是1800元;(2)∵购进A款净水器a台,∴购进BA款净水器台,根据题意得:≤8,解得:a≥38,∵a,都是正整数,∴a=47,44,41,38;=2,4,6,8;∴该商场有4种进货方案;(3)①当A款净水器购进47台,B款净水器购进2台时,47×(1350﹣1200)+2×(2100﹣1800)﹣5250=2400(元),400×6+0=2400(元),∴A款净水器赠送6个,B款净水器赠送0个,两款净水器滤芯共赠送6个;②当A款净水器购进44台,B款净水器购进4台+,44×(1350﹣1200)+4×(2100﹣1800)﹣5250=2550(元),由于400、500不管以多少整数倍相加都不等于2550,故不符合题意;③当A款净水器购进41台,B款净水器购进6台,41×(1350﹣1200)+6×(2100﹣1800)﹣5250=2700(元),400×3+500×3=2700(元),∴A款净水器赠送3个,B款净水器赠送3个,两款净水器滤芯共赠送6个;④当A款净水器购进38台,B款净水器购进8台,38×(1350﹣1200)+8×(2100﹣1800)﹣5250=2850(元),由于400、500不管以多少整数倍相加都不等于2850,故不符合题意;综上所述,两款净水器滤芯共赠送6个.【点评】本题主要考查分式方程的应用,不等式的应用,正确理解题意列出关系式是解题的关键.20.(2022•东营二模)为了防止水土流失,某村开展绿化荒山活动,计划经过若干年使本村绿化总面积新增360万平方米.自2014年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.问实际每年绿化面积多少万平方米?【分析】设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程.【解答】解:设原计划每年绿化面积为x万平方米,根据题意,得:解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米.【点评】此题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.21.(2022•长春模拟)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.【分析】设每套《水浒传》连环画的价格是x元.则《三国演义》连环画的价格是(x+60)元.根据“用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍”列出方程并解答.注意要验根.【解答】解:设每套《水浒传》连环画的价格为x元,则每套《三国演义》连环画的价格为(x+60)元.由题意,得=2×解得x=120经检验,x=120是原方程的解,且符合题意.答:每套《水浒传》连环画的价格为120元.【点评】本题考查分式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.22.(2022•章丘区模拟)山地自行车越来越受到大众的喜爱,某车行经销了某品牌的A、B两型车,其经销的A型车去年销售总额为5万元,今年每辆车的销售价将比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.其中A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)11001400销售价格(元)今年的销售价格2000试问:(1)今年A型车每辆售价多少元?(2)该车行计划新进一批A型车和B型车共60辆(见上表),要使这批车获利不少于33000元,A型车至多进多少辆?【分析】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利不少于33000元,由条件表示出33000与a之间的关系式,进而得出答案.【解答】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得:=,解得:x=1600.经检验,x=1600是原方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,由题意,得(1600﹣1100)a+(2000﹣1400)(60﹣a)≥33000,解得:a≤30,故要使这批车获利不少于33000元,A型车至多进30辆.【点评】本题考查了列分式方程解实际问题的运用以及一元一次不等式的应用,得出正确不等关系是解题关键.23.(2022•南岗区校级一模)某中学为了创建书香校园,去年购买了一批图书.其中故事书的单价比文学书的单价多4元,用1200元购买的故事书与用800元购买的文学书数量相等.(1)求去年购买的文学书和故事书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,故事书的单价与去年相同,这所中学今年计划再购买文学书和故事书共200本,且购买文学书和故事书的总费用不超过2120元,这所中学今年至少要购买多少本文学书?【分析】(1)设去年文学书单价为x元,则故事书单价为(x+4)元,根据用1200元购买的故事书与用800元购买的文学书数量相等,列出方程,再进行检验即可得出答案;(2)设这所学校今年购买y本文学书,根据购买文学书和故事书的总费用不超过2120元,列出不等式,求出不等式的解集即可得出答案.【解答】解:(1)设去年文学书单价为x元,则故事书单价为(x+4)元,根据题意得:,解得:x=8,经检验x=8是原方程的解,当x=8时x+4=12,答:去年文学书单价为8元,则故事书单价为12元.(2)设这所学校今年购买y本文学书,根据题意得.8×(1+25%)y+12(200﹣y)≤2120,y≥140,∴y最小值是140;答:这所中学今年至少要购买140本文学书.【点评】此题考查了分式方程和一元一次不等式的应用,分析题意,找到合适的等量关系是解决问题的关键,注意分式方程要检验.24.(2022•南岗区校级二模)某商品经销店欲购进A、B两种纪念品,用160元购进的A种纪念品与用240元购进的B种纪念品的数量相同,每件B种纪念品的进价比A种纪念品的进价贵10元.(1)求A、B两种纪念品每件的进价分别为多少元?(2)若该商店A种纪念品每件售价24元,B种纪念品每件售价35元,这两种纪念品共购进1000件,这两种纪念品全部售出后总获利不低于4900元,求A种纪念品最多购进多少件.【分析】(1)设A种纪念品每件的进价为x元,则B种纪念品每件的进价(x+10)元,根据用160元购进的A种纪念品与用240元购进的B种纪念品的数量相同列出方程,再解即可;(2)设A种纪念品购进a件,由题意得不等关系:A种纪念品的总利润+B种纪念品的总利润≥4900元,根据不等关系列出不等式,再解即可.【解答】解:(1)设A种纪念品每件的进价为x元,则B种纪念品每件的进价(x+10)元,由题意得:=,解得:x=20,经检验:x=20是原分式方程的解,x+10=30,答:A种纪念品每件的进价为20元,则B种纪念品每件的进价30元;(2)设A种纪念品购进a件,由题意得:(24﹣20)a+(35﹣30)(1000﹣a)≥4900,解得:a≤100,∵a为整数,∴a的最大值为100.答:A种纪念品最多购进100件.【点评】此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系或不等关系,再列出不等式或方程组即可.25.(2022•扬州三模)某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,现在报名参加的学生有多少人?【分析】设原来报名参加的学生有x人,根据原来每位同学平均分摊的费用﹣参加活动后的每位同学平均分摊的费用=4元,列出方程,再进行求解即可.【解答】解:设原来报名参加的学生有x人,依题意,得﹣=4,解这个方程,得x=20.经检验,x=20是原方程的解且符合题意.答:现在报名参加的学生有40人.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系,列出方程是解决问题的关键;注意分式方程要检验.26.(2022•包头模拟)甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?【分析】(1)直接利用队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,进而利用总工作量为1得出等式求出答案;(2)直接利用甲队参与该项工程施工的时间不超过36天,得出不等式求出答案.【解答】解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工90天完成该项工程,根据题意可得:+15(+)=1,解得:x=30,检验得:x=30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出等量关系是解题关键.27.(2022•朝阳区校级模拟)某市政工程队承担着1200米长的道路维修任务.为了减少对交通的影响,在维修了240米后通过增加人数和设备提高了工程进度,工作效率是原来的4倍,结果共用了6小时就完成了任务.求原来每小时维修多少米?【分析】设原来每小时维修x米,则后来每小时维修4x米,等量关系是:原来维修240米所用时间+后来维修(1200﹣240)米所用时间=6小时,依此列出方程求解即可.【解答】解:设原来每小时维修x米.根据题意得+=6,解得x=80,经检验,x=80是原方程的解,且符合题意.答:原来每小时维修80米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.28.(2022•本溪模拟)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?【分析】(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y元,根据销售收入﹣成本=利润结合全部售完后总利润不低于25%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:=1.5×,解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y﹣500﹣900≥(500+900)×25%,解得:y≥35.答:每套悠悠球的售价至少是35元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.29.(2022•丰泽区校级模拟)现有一工程由甲工程队单独完成这工程,刚好如期完成,若由乙工程队单独完成此项工程,则要比规定工期多用6天,现先由甲乙两队合做3天,余下的工程再由乙队单独完成,也正好如期完成.(1)求该工程规定的工期天数;(2)若甲工程队每天的费用为0.5万元,乙工程队每天的费用为0.4万元,该工程总预算不超过3.9万元,问甲工程队至少要工作几天?【分析】(1)设这项工程规定的工期天数为x天,根据甲工程队完成的工程+乙工程队完成的工程=整个工程,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由甲、乙两队单独完成该工程所需时间可得出甲工程队的工作效率是乙工程队的2倍,设甲工程队工作y天,则乙工程队工作(12﹣2y)天,根据总费用=0.5×甲工程队工作时间+0.4×乙工程队工作时间,即可得出关于y的一元一次不等式,解之即可得出结论.【解答】解:(1)设这项工程规定的工期天数为x天,根据题意得:+=1,解得:x=6,经检验,x=6是原方程的根,且符合题意.答:该工程规定的工期天数为6天.(2)∵6+6=12(天),∴甲工程队的工作效率是乙工程队的2倍.设甲工程队工作y天,则乙工程队工作(12﹣2y)天,根据题意得:0.5y+0.4(12﹣2y)≤3.9,解得:y≥3.答:甲工程队至少要工作3天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.30.(2022•平房区校级模拟)某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务.已知甲车间的加工能力是乙车间加工能力的1.5倍,并且加工240件需要的时间甲车间比乙车间少用2天.(1)求甲、乙每个车间的加工能力每天各是多少件?(2)甲、乙两个车间共同生产了若干天后,甲车间接到新任务,留下乙车间单独完成剩余工作,求甲、乙两车间至少合作多少天,才能保证完成任务.【分析】(1)设乙车间的加工能力每天是x件,则甲车间的加工能力每天是1.5x件.根据加工240件需要的时间甲车间比乙车间少用2天列出方程,求解即可;(2)设甲、乙两车间合作m天,才能保证完成任务.根据两车间合作的天数+乙车间单独完成剩余工作的≤15列出不等式,解不等式即可.【解答】解:(1)设乙车间的加工能力每天是x件,则甲车间的加工能力每天是1.5x件.根据题意得:﹣=2,解得:x=40.经检验x=40是方程的解,则1.5x=60.答:甲、乙每个车间的加工能力每天分别是60件和40件;(2)设甲、乙两车间合作m天,才能保证完成任务.根据题意得:m+[1200﹣(40+60)m]÷40≤15,解得m≥10.答:甲、乙两车间至少合作10天,才能保证完成任务.【点评】本题考查了分式方程的应用以及一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.31.(2022•松北区三模)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.【点评】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.32.(2022•博白县校级模拟)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同列出方程,求解即可;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据该爱心组织按照此需求的比例购买这2000件物品列出方程,求解即可.【解答】解:(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,=,解得:x=60.经检验,x=60是原方程的解,x+10=60+10=70.答:甲、乙两种救灾物品每件的价格各是70元、60元;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据题意得,m+3m=2000,解得m=500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.【点评】本题考查分式方程、一元一次方程的应用,分析题意,找到合适的等量关系是解决问题的关键.33.(2022•泰安模拟)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.【点评】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.34.(2022•东平县模拟)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【分析】(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.【点评】本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.35.(2022•诸城市一模)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.36.(2022•道外区二模)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T恤衫每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.【解答】解:(1)设第一批T恤衫每件进价是x元,由题意,得=,解得x=90,经检验x=90是分式方程的解,符合题意.答:第一批T恤衫每件的进价是90元;(2)设剩余的T恤衫每件售价y元.由(1)知,第二批购进=50(件).由题意,得120×50×+y×50×﹣4950≥650,解得y≥80.答:剩余的T恤衫每件售价至少要80元.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.37.(2022•保定一模)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?【分析】(1)将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可;(2)设甲整理y分钟完工,根据整理时间不超过30分钟,列出一次不等式解之即可.【解答】解:(1)设乙单独整理x分钟完工,根据题意得:,解得x=80,经检验x=80是原分式方程的解.答:乙单独整理80分钟完工.(2)设甲整理y分钟完工,根据题意,得,解得:y≥25,答:甲至少整理25分钟完工.【点评】分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.38.(2022•营口模拟)南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高40%(污水处理率=).(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2010年省会城市的污水处理率不低于70%”,那么我市2010年每天污水处理量在2007年每天污水处理量的基础上至少还需要增加多少万吨,才能符合国家规定的要求?【分析】(1)关键描述语是:2007年每天的污水处理率比2006年每天的污水处理率提高40%.等量关系为:2007年每天的污水处理率﹣2006年每天的污水处理率=40%;(2)关系式为:2010年污水处理率≥70%.【解答】解:(1)设2006年平均每天的污水排放量为x万吨,则2007年平均每天的污水排放量为1.05x万吨,依题意得:(4分)解得:x≈56(5分)经检验,x≈56是原方程的解(6分)∴1.05x≈59答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨.(7分)(2)设2010年平均每天的污水处理量还需要在2007年的基础上至少增加y万吨,(8分)依题意得:≥70%(9分)解得y≥15.56答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.【点评】分析题意,找到关键描述语,找到合适的等量关系,是解决问题的关键.此题还要套用题中给出的公式:污水处理率=.39.(2022•市中区校级模拟)在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了y天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?【分析】(1)设乙工程队单独完成这项工作需要x天,由题意列出分式方程,求出x的值即可;(2)首先根据题意列出a和y的关系式,进而求出a的取值范围,结合a和y都是正整数,即可求出a的值.【解答】解:(1)设乙工程队单独完成这项工作需要x天,由题意得:+(+)×36=1,解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a天,乙工程队做另一部分用了y天,依题意得:+=1,解得:y=80﹣a,∵y≤52,∴80﹣a≤52,解得:a≥42,答:甲工程队至少应做42天.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.40.(2022•旌阳区校级模拟)我校在开学前去商场购进A,B两种品牌的乒乓球拍,购买A品牌球拍共花费1800元,购买B品牌球拍共花费700元,且购买A品牌球拍数量是购买B品牌球拍的3倍,已知购买一副B品牌球拍比购买一副A品牌球拍多花5元.(1)求购买一副A品牌、一副B品牌球拍各需多少元?(2)为了进一步发展“校园乒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论