版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第03讲中考热点分式与二次根式【挑战中考满分模拟练】一.分式有意义的条件(共2小题)1.(2022•南京一模)若式子有意义,则x的取值范围是.2.(2022•建邺区二模)若分式在实数范围内有意义,则x的取值范围是.二.分式的值为零的条件(共1小题)3.(2022•昆明一模)若分式的值为0,则x=.三.分式的值(共1小题)4.(2022•禅城区二模)若ab≠0,且2b=3a,则的值是.四.分式的基本性质(共1小题)5.(2022•武安市一模)只把分式中的m,n同时扩大为原来的3倍后,分式的值也不会变,则此时a的值可以是下列中的()A.2 B.mn C. D.m2五.分式的加减法(共5小题)6.(2022•汉阳区模拟)计算:﹣=.7.(2022•大庆模拟)已知=+,则A为.8.(2022•清苑区一模)已知分式:(a+)(■﹣)的某一项被污染,但化简的结果等于a+2,被污染的项应为()A.0 B.1 C. D.9.(2022•两江新区模拟)阅读材料:在处理分数和分式的问题时,有时由于分子大于分母,或分子的次数高于分母的次数,在实际运算时难度较大,这时,我们可将分数(分式)拆分成一个整数(整式)与一个真分数(真分式)的和(差)的形式,通过对它的简单分析来解决问题,我们称这种方法为分离常数法,此法在处理分式或整除问题时颇为有效.将分式分离常数可类比假分数变形带分数的方法进行.如:==a+=a﹣1+,这样,分式就拆分成一个分式与一个整式a﹣1的和的形式,下列说法正确的有()个.①若x为整数,为负整数,则x=﹣3;②6<≤9;③若分式拆分成一个整式与一个真分式(分子为整数)的和(差)的形式为:5m﹣11+(整式部分对应等于5m﹣11,真分式部分对应等于),则m2+n2+mn的最小值为27.A.0 B.1 C.2 D.310.(2022•九龙坡区校级模拟)已知两个分式:,:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为M1;作差,结果记为N1;(即M1=+,N1=﹣)第二次操作:将M1,N1作和,结果记为M2;作差,结果记为N2;(即M2=M1+N1,N2=M1﹣N1)第三次操作:将M2,N2作和,结果记为M3;作差,结果记为N3;(即M3=M2+N2,N3=M2﹣N2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①M3=2M1;②当x=1时,M2+M4+M6+M8=20;③若N2•M4=4,则x=1;④在第n(n为正整数)次和第n+1次操作的结果中:为定值;⑤在第2n(n为正整数)次操作的结果中:M2n=,N2n=.以上结论正确的个数有()个.A.5 B.4 C.3 D.2六.分式的混合运算(共5小题)11.(2022•沂南县一模)计算:=()A.﹣2m﹣6 B.2m+6 C.﹣m﹣3 D.m+312.(2022•槐荫区校级模拟)化简(1+)÷的结果是()A.1 B. C. D.﹣13.(2022•揭阳二模)化简÷(1+)的结果是.14.(2022•西平县模拟)(1)化简:;(2)解不等式组:.15.(2022•肇源县一模)先将分式(1+)÷进行化简,然后请你给x选择一个合适的值,求原式的值.七.分式的化简求值(共15小题)16.(2022•绥化二模)当x﹣2y=0,代数式的值为.17.(2022•锦江区校级模拟)当a=2022时,(﹣1)÷的值为.18.(2022•定海区校级模拟)已知,那么的值等于.19.(2022•庆云县模拟)先化简,再求值:,其中.20.(2022•惠民县一模)先化简,再求值:,其中x是不等式组的整数解.21.(2022•泰安二模)计算:先化简,再求值:,其中x的值是一元二次方程x2+x﹣6=0的解.22.(2022•洛阳模拟)先化简,再求值:,其中a为不等式的整数解.23.(2022•永安市模拟)先化简,再求值:,其中x=.24.(2022•河口区二模)(1)计算:.(2)化简求值:先化简分式:,再从不等式组解集中取一个合适的整数代入,求原分式的值.25.(2022•杨浦区二模)先化简再计算:,其中.26.(2022•渠县二模)(1)计算:;(2)化简求值:,m、n为方程x2﹣3x+1=0的两根.27.(2022•德城区模拟)先化简,再求值:÷•,其中x=.28.(2022•定远县模拟)先化简,再求值:(1﹣),其中x=2.29.(2022•南宁二模)先化简,再求值:,其中x=2.30.(2022•祁阳县校级模拟)先化简,再求值:(﹣)÷,其中a2+a﹣2=0.八.负整数指数幂(共1小题)31.(2022•永城市模拟)计算:(﹣)﹣1=.九.二次根式有意义的条件(共3小题)32.(2022•济源校级模拟)如果二次根式有意义,那么x应该满足的条件是.33.(2022•大理市一模)使代数式有意义的x的取值范围是.34.(2022•卫辉市校级模拟)若在实数范围内有意义,则x的取值范围是.一十.二次根式的性质与化简(共6小题)35.(2022•吴中区模拟)实数a,b在数轴上的对应点如图所示,化简+|a+b|结果为()A.2a﹣b B.﹣2a﹣b C.﹣b D.3b36.(2022•滨江区一模)下列计算正确的是()A.x2+x2=x4 B.(﹣a2)3=a6 C. D.(a﹣b)2=a2﹣b237.(2022•曲阜市一模)下列运算正确的是()A.=﹣5 B.(﹣)﹣3=﹣27 C.x6÷x3=x2 D.(x3)2=x538.(2022•红花岗区二模)已知a,b均为正数,且,,是一个三角形的三边的长,则这个三角形的面积是()A. B.ab C. D.2ab39.(2022•安徽模拟)[初步感知]在④的横线上直接写出计算结果:①=1;②=3;③=6;④=.…[深入探究]观察下列等式:①1+2=;②1+2+3=;③1+2+3+4=;…根据以上等式的规律,在下列横线上填写适当内容:1+2+3+⋯+n+(n+1)=.[拓展应用]通过以上[初步感知]与[深入探究],计算:(1);(2)113+123+133+…+193+203.40.(2022•南山区模拟)已知a,b,c为正数,判断与的关系是()(提示:数形结合)A.≤ B.≥ C.= D.<一十一.二次根式的乘除法(共1小题)41.(2022•青岛一模)化简:=.一十二.二次根式的加减法(共4小题)42.(2022•南京一模)计算﹣的结果为.43.(2022•呼兰区一模)计算:﹣=.44.(2022•南山区模拟)数学课上,同学们对王老师黑板上的题很感兴趣,他们答案都不同,且众说纷纭.题目如下:化简:①小浩说:当a,b,c皆为正数时,化简结果为;②小特说:当a,b,c皆为负数时,化简结果为;③小凌说:当a<0,b>0,c<0时,化简结果为;④小斯说:当a>0,b<0,c<0时,化简结果为;(1)以上同学的说法正确的是(双选);(2)请在这四个中任选两个判断其正确性.45.(2022•平房区二模)计算﹣的结果是.一十三.二次根式的混合运算(共6小题)46.(2022•河东区模拟)计算的结果等于.47.(2022•西青区二模)计算()()的结果等于.48.(2022•藤县一模)计算:(﹣3)×2+sin30°﹣(π﹣3)0.49.(2022•花溪区模拟)(1)计算:(﹣2022)0+(﹣1)﹣.(2)下面是小星同学进行分式化简的过程:=……第一步=……第二步=……第三步=……第四步=……第五步根据上面化简过程,回答下列问题:①以上化简步骤中,第步进行分式的通分,这一步的依据是;②他化简的过程是从第步开始出现错误;③请完成该分式化简的正确过程,并就分式化简过程中应注意的事项,给其他同学提一条建议.50.(2022•赛罕区校级模拟)(1)计算:.(2)如图,点A、B在数轴上,它们对应的数分别为﹣2,,且点A、B到原点的距离相等.求x的值.51.(2022•崆峒区校级模拟)计算:﹣16+×cos45°﹣20170+3﹣1.一十四.二次根式的化简求值(共1小题)52.(2022•雄县一模)已知,.则(1)x2+y2=.(2)(x﹣y)2﹣xy=.一十五.二次根式的应用(共4小题)53.(2022•高青县一模)如图,在一个长方形中无重叠的放入面积分别为9cm2和8cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.2+1 B.1 C.8﹣6 D.6﹣854.(2022•青岛一模)如图,以边长为6cm的正六边形纸板的各顶点为端点,在各边上分别截取4cm长的12条线段,过截得的12端点作所在边的垂线,形成6个有两个直角的四边形.把它们沿图中虚线减掉,用剩下的纸板折成一个底为正六边形的无盖柱形盒子,则它的容积为cm3.55.(2022•湖口县二模)俊俊和霞霞共同合作将一张长为,宽为1的矩形纸片进行裁剪(共裁剪三次),裁剪出来的图形刚好是4个等腰三角形(无纸张剩余).霞
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年数字水位仪项目申请报告
- 2025年国土资源普查核仪器项目申请报告模范
- 2024-2025学年西藏那曲市巴青县三上数学期末统考试题含解析
- 军训心得体会汇编15篇
- 2025年水上加油船项目规划申请报告模板
- 2025年放射性废气处置设备项目申请报告
- 2022装修监理年终工作总结
- 去超市实习报告范文8篇
- 住房申请书模板10篇
- 演讲竞聘演讲稿范文6篇
- 2024年度共享办公空间租赁合同2篇
- 《血气分析的临床应》课件
- 2024年07月11026经济学(本)期末试题答案
- 2024年中小企业股权融资合同3篇
- 2024年01月11289中国当代文学专题期末试题答案
- 2024年四级品酒师资格认证考试题库(浓缩400题)
- 国家电投《新能源电站单位千瓦造价标准值(2024)》
- 2024年云南高中学业水平合格考历史试卷真题(含答案详解)
- 电影摄影及特殊拍摄技术(上海电影艺术职业学院)知到智慧树答案
- 山东省临沂市2023-2024学年高二上学期期末考试政治试题 含答案
- 东北三省精准教学2024-2025学年高三上学期12月联考数学试卷
评论
0/150
提交评论