专题22 反比例函数的综合问题_第1页
专题22 反比例函数的综合问题_第2页
专题22 反比例函数的综合问题_第3页
专题22 反比例函数的综合问题_第4页
专题22 反比例函数的综合问题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年浙教版八年级数学下册精选压轴题培优卷专题22反比例函数的综合问题姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共9小题,满分18分,每小题2分)1.(2分)(2021•武进区模拟)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0) B.(2,0) C.(,0) D.(3,0)2.(2分)(2021•罗湖区校级模拟)如图,已知点A是一次函数y=2x的图象与反比例函数y=﹣的图象在第一象限内的交点,AB⊥x轴于点B,点C在x轴的负半轴上,且∠ACB=∠OAB,△AOB的面积为4,则点C的坐标为()A.(﹣5,0) B.(﹣6,0) C.(﹣5.5,0) D.(﹣4,0)3.(2分)(2016•聊城模拟)函数y=和y=在第一象限内的图象如图所示,点P是y=的图象上一动点,作PC⊥x轴于点C,交y=的图象于点A,作PD⊥y轴于点D,交y=的图象于点B,给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④PA=3AC,其中正确的结论序号是()A.①②③ B.②③④ C.①③④ D.①②④4.(2分)(2018•滨州模拟)如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=的图象经过点A,若△BEC的面积为6,则k等于()A.3 B.6 C.12 D.245.(2分)(2022•惠城区一模)如图,四边形OABC是平行四边形,对角线OB在y轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A,C作x轴的垂线垂足分别为M和N,则有以下的结论:①ON=OM;②△OMA≌△ONC;③阴影部分面积是(k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称,其中正确的结论是()A.①②④ B.②③ C.①③④ D.①④6.(2分)(2022•无棣县一模)如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线y=过点F,交AB于点E,连接EF.若,S△BEF=4,则k的值为()A.6 B.8 C.12 D.167.(2分)(2022秋•渠县校级期末)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A.①②③ B.②③④ C.①②④ D.①③④8.(2分)(2021•宣州区校级自主招生)如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支交AB于点P,交BC于点E,直线PE交y轴于点D,交x轴于点F,连接AC.则下列结论:①S四边形ACFP=k;②四边形ADEC为平行四边形;③若=,则=;④若S△CEF=1,S△PBE=4,则k=6.其中正确的是()A.①②④ B.①② C.②④ D.①③9.(2分)(2015•乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,=.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C.当以CD为边的正方形的面积为时,k的值是()A.2 B.3 C.5 D.7评卷人得分二.填空题(共10小题,满分20分,每小题2分)10.(2分)(2018春•舟山期末)如图,平行四边形AOBC中,对角线交于点E,双曲线(k>0)经过A,E两点,若平行四边形AOBC的面积为24,则k=.11.(2分)(2017秋•大安市期末)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是.12.(2分)(2017•镇海区校级自主招生)如图,△OAP、△ABQ均是等腰直角三角形,点P、Q在函数y=(x>0)的图象上,直角顶点A、B均在x轴上,则点B的坐标为.13.(2分)(2016•深圳校级二模)如图,已知四边形ABCD是平行四边形,BC=3AB,A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(x<0)的图象上,则k的值等于.14.(2分)(2020•锦州模拟)如图,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2,G为矩形对角线的交点,经过点G的双曲线与BC相交于点M,则CM:MB=.15.(2分)(2022•瓯海区校级自主招生)直线y=a分别与直线y=x和双曲线y=交于D、A两点,过点A、D分别作x轴的垂线段,垂足为点B,C.若四边形ABCD是正方形,则a的值为.16.(2分)(2021秋•前进区期末)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3,…,过点A1、A2、A3、…分别作x轴的垂线与反比例函数的图象相交于点P1、P2、P3、…,得直角三角形OP1A1、A1P2A2、A2P3A3、…,设其面积分别为S1、S2、S3、…,则Sn的值为.17.(2分)(2022•咸阳模拟)如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值是.18.(2分)(2021春•永嘉县校级期末)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣1,0)、B(1,1),将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B1、C1正好落在反比例函数的图象上,则k=.19.(2分)(2016•陕西校级模拟)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为.评卷人得分三.解答题(共8小题,满分62分)20.(8分)(2022秋•济南期末)如图,函数y=(x>0)的图象过点A(n,2)和B(,2n﹣3)两点.(1)求n和k的值;(2)将直线OA沿x轴向左移动得直线DE,交x轴于点D,交y轴于点E,交y=(x>0)于点C,若S△ACO=6,求直线DE解析式;(3)在(2)的条件下,第二象限内是否存在点F,使得△DEF为等腰直角三角形,若存在,请直接写出点F的坐标;若不存在,请说明理由.21.(6分)(2022春•姑苏区校级月考)如图,一次函数y=kx+b与反比例函数y=的图象交于点A(1,6),B(3,n)两点.(1)求反比例函数和一次函数的表达式;(2)连接OA、OB,求△AOB的面积;(3)直线a经过点(0,1)且平行于x轴,点M在直线a上,点N在y轴上,以A、B、M、N为顶点的四边形可以是平行四边形吗?如果可以,直接写出点M、N的坐标,如果不可以,说明理由.22.(6分)(2022春•封丘县期中)如图,在平面直角坐标系中,点B,D分别在反比例函数和的图象上,AB⊥x轴于点A,DC⊥x轴于点C,O是线段AC的中点,AB=3,DC=2.(1)求反比例函数的表达式.(2)连接BD,OB,OD,求△ODB的面积.(3)P是线段AB上的一个动点,Q是线段OB上的一个动点,试探究是否存在点P,使得△APQ是等腰直角三角形?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.23.(6分)(2022春•吴兴区期末)矩形OABC的顶点A,C分别在x,y轴的正半轴上,点F是边BC上的一个动点(不与点B,C重合),过点F的反比例函数的图象与边AB交于点E(8,m),AB=4.(1)如图1,若BE=3AE.①求反比例函数的表达式;②将矩形OABC折叠,使O点与F点重合,折痕分别与x,y轴交于点H,G,求线段OG的长度.(2)如图2,连接OF,EF,请用含m的关系式表示OAEF的面积,并求OAEF的面积的最大值.24.(8分)(2022春•镇巴县期末)如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(2,3),B(a,﹣1),设直线AB交x轴于点C.(1)求反比例函数和一次函数的表达式;(2)若点P是反比例函数图象上的一点,且△POC是以OC为底边的等腰三角形,求P点的坐标.25.(8分)(2022秋•达川区期末)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=(k≠0)的第一象限内的图象上,OA=4,OC=3,动点P在x轴的上方,且满足S△PAO=S矩形AOCB.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PA,求PO+PA的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.26.(10分)(2022春•姑苏区校级期中)如图,在平面直角坐标系中,已知△ABC中,AB=AC,∠BAC=90°,已知点A(0,﹣6)、C(﹣3,﹣7),点B在第三象限内.(1)求点B的坐标;(2)将△ABC以每秒2个单位的速度沿y轴向上平移t秒,若存在某一时刻t,使在第二象限内点B、C两点的对应点B',C'正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问:是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B'、C'四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点Q的坐标;若不存在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论