版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省铜川市重点中学高三下学期第五次调研考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是定义域为的偶函数,且在单调递增,,则()A. B.C. D.2.已知数列,,,…,是首项为8,公比为得等比数列,则等于()A.64 B.32 C.2 D.43.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.4.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是()A. B.C. D.5.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为()A.56383 B.57171 C.59189 D.612426.已知抛物线:()的焦点为,为该抛物线上一点,以为圆心的圆与的准线相切于点,,则抛物线方程为()A. B. C. D.7.某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为()A. B. C. D.8.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为().A.6500元 B.7000元 C.7500元 D.8000元9.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)10.年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是()A.月下旬新增确诊人数呈波动下降趋势B.随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数C.月日至月日新增确诊人数波动最大D.我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值11.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.12.复数的共轭复数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足:点在直线上,若使、、构成等比数列,则______14.的角所对的边分别为,且,,若,则的值为__________.15.已知三棱锥,,是边长为4的正三角形,,分别是、的中点,为棱上一动点(点除外),,若异面直线与所成的角为,且,则______.16.如图,在△ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1.(1)求椭圆的方程;(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,请说明理由.18.(12分)已知函数.(1)当时,不等式恒成立,求的最小值;(2)设数列,其前项和为,证明:.19.(12分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.20.(12分)[选修45:不等式选讲]已知都是正实数,且,求证:.21.(12分)已知函数.其中是自然对数的底数.(1)求函数在点处的切线方程;(2)若不等式对任意的恒成立,求实数的取值范围.22.(10分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据偶函数的性质,比较即可.【详解】解:显然,所以是定义域为的偶函数,且在单调递增,所以故选:C【点睛】本题考查对数的运算及偶函数的性质,是基础题.2、A【解析】
根据题意依次计算得到答案.【详解】根据题意知:,,故,,.故选:.【点睛】本题考查了数列值的计算,意在考查学生的计算能力.3、D【解析】双曲线的渐近线方程是,所以,即,,即,,故选D.4、B【解析】
执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5、C【解析】
根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.【详解】被5除余3且被7除余2的正整数构成首项为23,公差为的等差数列,记数列则令,解得.故该数列各项之和为.故选:C.【点睛】本题考查等差数列的应用,属基础题。6、C【解析】
根据抛物线方程求得点的坐标,根据轴、列方程,解方程求得的值.【详解】不妨设在第一象限,由于在抛物线上,所以,由于以为圆心的圆与的准线相切于点,根据抛物线的定义可知,、轴,且.由于,所以直线的倾斜角为,所以,解得,或(由于,故舍去).所以抛物线的方程为.故选:C【点睛】本小题主要考查抛物线的定义,考查直线的斜率,考查数形结合的数学思想方法,属于中档题.7、C【解析】
作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【详解】三棱锥的实物图如下图所示:将其补成直四棱锥,底面,可知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.8、D【解析】
设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可.【详解】设目前该教师的退休金为x元,则由题意得:6000×15%﹣x×10%=1.解得x=2.故选D.【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.9、B【解析】M=y|y=N==x|∴M∩N=(1,2).故选B.10、D【解析】
根据新增确诊曲线的走势可判断A选项的正误;根据新增确诊曲线与新增治愈曲线的位置关系可判断B选项的正误;根据月日至月日新增确诊曲线的走势可判断C选项的正误;根据新增确诊人数的变化可判断D选项的正误.综合可得出结论.【详解】对于A选项,由图象可知,月下旬新增确诊人数呈波动下降趋势,A选项正确;对于B选项,由图象可知,随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数,B选项正确;对于C选项,由图象可知,月日至月日新增确诊人数波动最大,C选项正确;对于D选项,在月日及以前,我国新型冠状病毒肺炎新增确诊人数大于新增治愈人数,我国新型冠状病毒肺炎累计确诊人数不在月日左右达到峰值,D选项错误.故选:D.【点睛】本题考查统计图表的应用,考查数据处理能力,属于基础题.11、A【解析】
根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.12、D【解析】
直接相乘,得,由共轭复数的性质即可得结果【详解】∵∴其共轭复数为.故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.二、填空题:本题共4小题,每小题5分,共20分。13、13【解析】
根据点在直线上可求得,由等比中项的定义可构造方程求得结果.【详解】在上,,成等比数列,,即,解得:.故答案为:.【点睛】本题考查根据三项成等比数列求解参数值的问题,涉及到等比中项的应用,属于基础题.14、【解析】
先利用余弦定理求出,再用正弦定理求出并把转化为与边有关的等式,结合可求的值.【详解】因为,故,因为,所以.由正弦定理可得三角形外接圆的半径满足,所以即.因为,解得或(舍).故答案为:.【点睛】本题考查正弦定理、余弦定理在解三角形中的应用,注意结合求解目标对所得的方程组变形整合后整体求解,本题属于中档题.15、【解析】
取的中点,连接,,取的中点,连接,,,直线与所成的角为,计算,,根据余弦定理计算得到答案。【详解】取的中点,连接,,依题意可得,,所以平面,所以,因为,分别、的中点,所以,因为,所以,所以平面,故,故,故两两垂直。取的中点,连接,,,因为,所以直线与所成的角为,设,则,,所以,化简得,解得,即.故答案为:.【点睛】本题考查了根据异面直线夹角求长度,意在考查学生的计算能力和空间想象能力.16、【解析】试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是.考点:向量的运算,基本不等式.【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(1)不存在,理由见解析【解析】
(1)利用离心率和过点,列出等式,即得解(1)设的方程为,与椭圆联立,利用韦达定理表示中点N的坐标,用点坐标表示,利用韦达关系代入,得到关于k的等式,即可得解.【详解】(1)由题意,可得解得则,故椭圆的方程为.(1)当直线的斜率不存在时,,不符合题意.当的斜率存在时,设的方程为,联立得,设,则,,,即.设,则,,,则,即,整理得,此方程无解,故的方程不存在.综上所述,不存在直线使得.【点睛】本题考查了直线和椭圆综合,考查了弦长和中点问题,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.18、(1);(2)证明见解析.【解析】
(1),分,,三种情况推理即可;(2)由(1)可得,即,利用累加法即可得到证明.【详解】(1)由,得.当时,方程的,因此在区间上恒为负数.所以时,,函数在区间上单调递减.又,所以函数在区间上恒成立;当时,方程有两个不等实根,且满足,所以函数的导函数在区间上大于零,函数在区间上单增,又,所以函数在区间上恒大于零,不满足题意;当时,在区间上,函数在区间上恒为正数,所以在区间上恒为正数,不满足题意;综上可知:若时,不等式恒成立,的最小值为.(2)由第(1)知:若时,.若,则,即成立.将换成,得成立,即,以此类推,得,,上述各式相加,得,又,所以.【点睛】本题考查利用导数研究函数恒成立问题、证明数列不等式问题,考查学生的逻辑推理能力以及数学计算能力,是一道难题.19、(1),(1,2);(2)存在,【解析】
(1)由直线恒过点点及抛物线C上的点到点Q的距离与到准线的距离之和的最小值为,求出抛物线的方程,再由直线与抛物线相切,即可求得切点的坐标;(2)直线与抛物线方程联立,利用根与系数的关系,求得直线PA,PB的斜率,求出斜率之和为定值,即存在实数使得斜率之和为定值.【详解】(1)由题意,直线变为2x+1-m(2y+1)=0,所以定点Q的坐标为抛物线的焦点坐标,由抛物线C上的点到点Q的距离与到其焦点F的距离之和的最小值为,可得,解得或(舍去),故抛物线C的方程为又由消去y得,因为直线与抛物线C相切,所以,解得,此时,所以点P坐标为(1,2)(2)设存在满足条件的实数,点,联立,消去x得,则,依题意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在实数=满足条件.【点睛】本题主要考查抛物线方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版开发商与购房者共有产权房买卖及物业管理合同3篇
- 2024房贷离婚协议书专业起草与执行服务3篇
- 2025年度旅游景区安保人员劳务派遣协议3篇
- 2025年度智能物流企业劳动合同签订及安全培训确认书3篇
- 2024年绘画教学服务协议样本
- 2024年空气净化服务合同
- 二零二五年大米产业链上下游合作协议2篇
- 2024年石油化工企业扩建施工合同
- 2024年知识产权联合开发与保护合同版B版
- 2024年度景区食堂承包合作协议3篇
- 数据分析基础与应用指南
- 人教版(PEP)小学六年级英语上册全册教案
- 广东省广州市海珠区2023-2024学年六年级上学期月考英语试卷
- 急救理论知识试题库(附参考答案)
- 《春秋》导读学习通超星期末考试答案章节答案2024年
- 消防水域救援个人防护装备试验 大纲
- DL∕T 5210.2-2018 电力建设施工质量验收规程 第2部分:锅炉机组
- 大数据与人工智能营销智慧树知到期末考试答案章节答案2024年南昌大学
- 机电样板施工主要技术方案
- 歌舞表演专业论文范文
- 涉税风险管理方案
评论
0/150
提交评论