版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆的简单几何性质教学教案椭圆的简单几何性质2.1.2椭圆的简单几何性质目标:(1)通过对椭圆标准方程的讨论,使学生掌握椭圆的几何性质,并正确地画出它的图形;领会每一个几何性质的内涵,并学会运用它们解决一些简单问题。(2)培养学生观察、分析、抽象、概括的逻辑思维能力;运用数形结合思想解决实际问题的能力。重点:椭圆的简单几何性质及其探究过程。教学难点:利用曲线方程研究曲线几何性质的基本方法和离心率是用来刻画椭的扁平程度的给出过程教学过程:一、复习引入:1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.标准方程:,()二、新课讲解:1.范围:由标准方程知,椭圆上点的坐标满足不等式,说明椭圆位于直线,所围成的矩形里.2.对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。若同时以代替,代替方程也不变,则曲线关于原点对称.所以,椭圆关于轴、轴和原点对称.这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心.3.顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标.在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。同理令得,即,是椭圆与轴的两个交点.所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点.同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长.由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,,,且,即.4.离心率:椭圆的焦距与长轴的比叫椭圆的离心率.∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。当且仅当时,,两焦点重合,图形变为圆,方程为.5.填写下列表格:方程图像a、b、c焦点范围对称性椭圆关于y轴、x轴和原点都对称顶点长、短轴长长轴:A1A2长轴长短轴:B1B2短轴长离心率例1.求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标.解:把已知方程化为标准方程,,,∴椭圆长轴和短轴长分别为和,离心率,焦点坐标,,顶点,,,.例2.过适合下列条件的椭圆的标准方程:(1)经过点、;(2)长轴长等于,离心率等于.解:(1)由题意,,,又∵长轴在轴上,所以,椭圆的标准方程为.(2)由已知,,所以,椭圆的标准方程为或.例3.如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程.分析:若设点,则,到直线:的距离,则容易得点的轨迹方程.作业:P47第4、5题空间向量及其运算空间向量及其运算●考试目标主词填空1.空间向量基本定理及应用空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p存在惟一的有序实数组x、y、z,使p=xa+yb+zc.2.向量的直角坐标运算:设a=(a1,a2,a3),b=(b1,b2,b3),A(x1,y1,z1),B(x2,y2,z2).则a+b=.a-b=.ab=.若a、b为两非零向量,则a⊥bab=0=0.●题型示例点津归纳【例1】已知空间四边形OABC中,∠AOB=∠BOC=∠AOC,且OA=OB=OC.,N分别是OA,BC的中点,G是N的中点.求证:OG⊥BC.【解前点津】要证OG⊥BC,只须证明即可.而要证,必须把、用一组已知的空间基向量表示.又已知条为∠AOB=∠BOC=∠AOC,且OA=OB=OC,因此可选为已知的基向量.【规范解答】连ON由线段中点公式得:又,所以)因为.且,∠AOB=∠AOC.所以=0,即OG⊥BC.【解后归纳】本题考查应用平面向量、空间向量和平面几何知识证线线垂直的能力.【例2】在棱长为a的正方体ABCD—A1B1C1D1中,求:异面直线BA1与AC所成的角.【解前点津】利用,求出向量与的夹角〈,〉,再根据异面直线BA1,AC所成角的范围确定异面直线所成角.【规范解答】因为,所以因为AB⊥BC,BB1⊥AB,BB1⊥BC,例2图所以=0,=-a2.所以=-a2.又所以〈〉=120°.所以异面直线BA1与AC所成的角为60°.【解后归纳】求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量表示.【例3】如图,在正方体ABCD—A1B1C1D1中,E、F分别是BB1、DC的中点.(1)求AE与D1F所成的角;(2)证明AE⊥平面A1D1F.【解前点津】设已知正方体的棱长为1,且=e1,=e2,=e3,以e1,e2,e3为坐标向量,建立空间直角坐标系D—xyz,则:(1)A(1,0,0),E(1,1,),F(0,,0),D1(0,0,1),所以=(0,1,),=(0,,-1).所以=(0,1),(0,,-1)=0.所以⊥,即AE与D1F所成的角为90°.(2)又=(1,0,0)=,且=(1,0,0)(0,1,)=0.所以AE⊥D1A1,由(1)知AE⊥D1F,且D1A1∩D1F=D1.所以AE⊥平面A1D1F.【解后归纳】本题考查应用空间向量的坐标运算求异面直线所成的角和证线面垂直的方法.【例4】证明:四面体中连接对棱中点的三条直线交于一点且互相平分(此点称为四面体的重心).【规范解答】∵E,G分别为AB,AC的中点,∴EG,同理HF,∴EGHF.从而四边形EGFH为平行四边形,故其对角线EF,GH相交于一点O,且O为它们的中点,连接OP,OQ.只要能证明向量=-就可以说明P,O,Q三点共线且O为的中点,事实上,,而O为GH的中点,例4图∴CD,QHCD,∴==0.∴=,∴经过O点,且O为的中点.【解后归纳】本例要证明三条直线相交于一点O,我们采用的方法是先证明两条直线相交于一点,然后证明两向量共线,从而说明P、O、Q三点共线进而说明直线过O点.●对应训练分阶提升一、基础夯实1.在下列条中,使与A、B、C一定共面的是()A.B.C.D.2.与向量a=(12,5)平行的单位向量是()A.B.C.D.3.若向量{a,b,c}是空间的一个基底,向量m=a+b,n=a-b,那么可以与m、n构成空间另一个基底的向量是()?A.aB.b?C.cD.2a?4.a、b是非零向量,则〈a,b〉的范围是()?A.(0,)B.[0,]?C.(0,π)?D.[0,π]?5.若a与b是垂直的,则ab的值是()?A.大于0B.等于零??C.小于0D.不能确定6.向量a=(1,2,-2),b=(-2,-4,4),则a与b()A.相交B.垂直?C.平行?D.以上都不对7.A(1,1,-2)、B(1,1,1),则线段AB的长度是()??A.1?B.2?C.3?D.48.m={8,3,a},n={2b,6,5},若m∥n,则a+b的值为()?A.0?B.C.D.89.a={1,5,-2},b={m,2,m+2},若a⊥b,则m的值为()??A.0?B.6?C.-6?D.±610.A(2,-4,-1),B(-1,5,1),C(3,-4,1),令a=,b=,则a+b对应的点为()?A.(5,-9,2)B.(-5,9,-2)?C.(5,9,-2)D.(5,-9,2)11.a=(2,-2,-3),b=(2,0,4),则a与b的夹角为()?A.arccos?B.?C.D.90°12.若非零向量a={x1,y1,z1},b={x2,y2,z2},则是a与b同向或反向的()?A.充分不必要条B.必要非充分条??C.充要条D.不充分不必要条二、思维激活13.已知向量a,b,c满足a+b+c=0,a=3,b=1,c=4.则ab+bc+ca=.?14.已知a=2,b=,ab=-,则a、b所夹的角为.15.已知空间三点A、B、C坐标分别为(0,0,2),(2,2,0),(-2,-4,-2),点P在xOy平面上且PA⊥AB,PA⊥AC,则P点坐标为.16.已知a={8,-1,4},b={2,2,1},则以a、b为邻边的平行四边形的面积为.三、能力提高17.已知线段AB在平面α内,线段AC⊥α,线段BD⊥AB,且与α所成的角是30°,如果AB=a,AC=BD=b,求C、D之间的距离.18.长方体ABCD—A1B1C1D1中,E、F分别为AB、B1C1中点,若AB=BC=2,AA1=4,试用向量法求:(1)的夹角的大小.(2)直线A1E与FC所夹角的大小.19.在正方体ABCD—A1B1C1D1中,E、F分别为BB1、DC的中点,求证:D1F⊥平面ADE.20.如图所示,已知ABCD,O是平面AC外的一点,,求证:A1,B1,C1,D1四点共面.空间向量及其运算习题解答1.C由向量共线定义知.?2.C设此向量为(x,y),∴,?∴3.C4.D根据两向量所成的角的定义知选D.5.B当a⊥b时,ab=0(cos〈a,b〉=0)?6.Ca=(1,2,-2)=-b∴a∥b.7.CAB==3.?8.C∵m∥n,故(8,3,a)=k(2b,6,5),?∴8=2bk,3=6k,a=5k,?∴k=故a=,b=8,∴a+b=+8=9.B∵a⊥b∴1m+52-2(m+2)=0.∴m=6.10.B=(-1,0,-2),=(-4,9,0),∴a+b=(-5,9,-2).11.Ccos(ab)==-.12.A?若,则a与b同向或反向,反之不成立.13.-13∵a+b+c=0,∴(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0,?∴ab+bc+ca=-(a2+b2+c2)=-(9+1+16)=-13.14.?cos〈a,b〉=.∴a,b所夹的角为.15.(-8,6,0)由向量的数量的积求得.16.9S=absin〈a,b〉求得.17.如图,由AC⊥α,知AC⊥AB.?过D作DD′⊥α,D′为垂足,则∠DBD′=30°,〈〉=120°,∴CD2==b2+a2+b2+2b2cos120°=a2+b2.∴CD=点评:本题把线段转化成向量表示,然后利用向量进行运算.18.如图,建立空间坐标系,则D(0,0,0)、A(2,0,0),B(2,2,0)、C(0,2,0)、A1(2,0,4)、B1(2,2,4)、C1(0,2,4).由题设可知E(2,1,0),F(1,2,4).(1)令的夹角为θ,?则cosθ=.∴的夹角为π-aros.(2)∴直线A1E与FC的夹角为aros19.如图所示,不妨设正方体的棱长为1,且设=i,=j,=k,以i、j、k的坐标向量建立空间直角坐标系D—xyz,则=(-1,0,0),=(0,,-1),?=(-1,0,0)(0,,-1)=0,∴AD⊥D1F.又=(0,1,),=(0,,-1),∴=(0,1,)(0,,-1)=-=0.∴AE⊥D1F,又AE∩AD=A,∴D1F⊥平面ADE.点评:利用向量法解决立体几何问题,首先必须建立适当的坐标系.20.证明:∵=2∴A1,B1,C1,D1四点共面.正切函数的定义泗县三中教案、学案:正切函数的定义、图像与性质年级高一学科数学课题正切函数的定义、图像与性质授课时间撰写人学习重点掌握正切函数的图像与性质学习难点利用数形结合思想分析问题、解决问题的技能学习目标(1)了解任意角的正切函数概念;(2)掌握正切线的画法;(3)能熟练掌握正切函数的图像与性质;(4)掌握利用数形结合思想分析问题、解决问题的技能。教学过程一自主学习1.对于正切函数(1)定义域:,(2)值域:观察:当从小于,时,当从大于,时,。(3)周期性:(4)奇偶性:(5)单调性:2.作,的图象二师生互动例1.比较与的大小例2.讨论函数的性质例3.观察正切曲线写出满足下列条件的x的值的范围:tanx>0三巩固练习1.与函数的图象不相交的一条直线是()2.函数的定义域是3.函数的值域是4.函数的奇偶性是,周期是5.求函数的定义域、值域,指出它的周期性、奇偶性、单调性,并说明它的图象可以由正切曲线如何变换得到。四课后反思五课后巩固练习1.以下函数中,不是奇函数的是()A.y=sinx+tanxB.y=xtanx-1C.y=D.y=lg2.下列命题中正确的是()A.y=cosx在第二象限是减函数B.y=tanx在定义域内是增函数C.y=|cos(2x+)|的周期是D.y=sin|x|是周期为2π的偶函数3.用图象求函数的定义域。4.不通过求值,比较tan135°与tan138°的大小演绎推理学案第5课时2.1.1演绎推理(二)学习目标正确区分合情推理和演绎推理知道它们的联系和区别,加深对演绎推理的理解和运用。学习过程一、学前准备1.二、新课导学探究新知(预习教材P30~P33,找出疑惑之处)问题1:“三段论”可以用符号语言表示为(1)大前提:_____________________;(2)小前提:_____________________;(3)结论:_____________________。注意:在实际证明过程中,为了叙述简洁,如果大前提是显然,则可以省略。2、思考并回答下面问题:因为所有边长都相等的凸多边形是正方形,………………大前提而菱形是所有边长都相等的凸多边形,……小前提所以菱形是正方形。…结论(1)上面的推理正确吗?(2)推理的结论正确吗?为什么?(3)这个问题说明了什么?结论:上述推理的形式正确,但大前提是错误的,所以所得的结论是错误的。总结:应用示例例1.证明函数在内是增函数。解:反馈练习1.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法().A.一般的原理原则;B.特定的命题;C.一般的命题;D.定理、公式.2.若函数是奇函数,求证。三、总结提升.本节小结1.本节学习了哪些内容?答:学习评价一、自我评价你完成本节导学案的情况为()A.很好B.较好C.一般D.较差二、当堂检测1.下列表述正确的是()。(1)归纳推理是由部分到整体的推理;(2)归纳推理是由一般到一般的推理;(3)演绎推理是由一般到特殊的推理;(4)类比推理是由特殊到一般的推理;(5)类比推理是由特殊到特殊的推理。A、(1)(2)(3)B、(2)(3)(4)C、(2)(4)(5)D、(1)(3)(5)2、下面几种推理过程是演绎推理的是()。A、两条直线平行,同旁内角互补,如果和是两条平行线的同旁内角,则;B、由平面三角形的性质,推测空间四面体的性质;C、某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人;D、在数列中,,,由此归纳出的通项公式。3、课本练习3。.凸多面体面数(F)顶点数(V)棱数(E)三棱柱569长方形6812五棱柱71015三棱锥446四棱锥558五棱锥6610课后作业1.设m是实数,求证方程有两个相异的实数根。2.用三段论证明:三角形内角和等于180°.直线的参数方程学案第06时2、2、3直线的参数方程学习目标1.了解直线参数方程的条及参数的意义;2.初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。学习过程一、学前准备复习:1、若由共线,则存在实数,使得,2、设为方向上的,则=??;3、经过点,倾斜角为的直线的普通方程为。二、新导学探究新知(预习教材P35~P39,找出疑惑之处)1、选择怎样的参数,才能使直线上任一点的坐标与点的坐标和倾斜角联系起呢?由于倾斜角可以与方向联系,与可以用距离或线段数量的大小联系,这种“方向”“有向线段数量大小”启发我们想到利用向量工具建立直线的参数方程。如图,在直线上任取一点,则=,而直线的单位方向向量因为,所以存在实数,使得=,即有,因此,经过点,倾斜角为的直线的参数方程为:2.方程中参数的几何意义是什么?应用示例例1.已知直线与抛物线交于A、B两点,求线段AB的长和点到A,B两点的距离之积。(教材P36例1)解:例2.经过点作直线,交椭圆于两点,如果点恰好为线段的中点,求直线的方程.(教材P37例2)解:反馈练习1.直线上两点A,B对应的参数值为,则=()A、0B、C、4D、22.设直线经过点,倾斜角为,(1)求直线的参数方程;(2)求直线和直线的交点到点的距离;(3)求直线和圆的两个交点到点的距离的和与积。三、总结提升本节小结1.本节学习了哪些内容?答:1.了解直线参数方程的条及参数的意义;2.初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。学习评价一、自我评价你完成本节导学案的情况为()A.很好B.较好C.一般D.较差后作业1.已知过点,斜率为的直线和抛物线相交于两点,设线段的中点为,求点的坐标。2.经过点作直线交双曲线于两点,如果点为线段的中点,求直线的方程3.过抛物线的焦点作倾斜角为的弦AB,求弦AB的长及弦的中点到焦点F的距离。回归分析的基本思想及其初步应用要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.教学过程:一、复习准备:1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.二、讲授新课:1.教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即.残差平方和:回归值与样本值差的平方和,即.回归平方和:相应回归值与样本均值差的平方和,即.(2)学习要领:①注意、、的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数来刻画回归的效果,它表示解释变量对预报变量变化的贡献率.的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.2.教学例题:例2关于与有如下数据:245683040605070为了对、两个变量进行统计分析,现有以下两种线性模型:,,试比较哪一个模型拟合的效果更好.平面直角坐标系与伸缩变换高二数学导学案主备人:备时间:组长签字:1.1平面直角坐标系与伸缩变换一、三维目标1、知识与技能:回顾在平面直角坐标系中刻画点的位置的方法2、能力与与方法:体会坐标系的作用3、情感态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。二、学习重点难点1、重点:体会直角坐标系的作用2、难点:能够建立适当的直角坐标系,解决数学问题三、学法指导:自主、合作、探究四、知识链接问题1:如何刻画一个几何图形的位置?问题2:如何研究曲线与方程间的关系?五、学习过程一.平面直角坐标系的建立某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚了4s。已知各观测点到中心的距离是1020m,试确定巨响发生的位置(假定声音传播的速度是340m/s,各观测点均在同一平面上)问题1:思考1:问题1:用什么方法描述发
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 从理论到实践探索技术革新的实验教学模式
- 2025年甘肃货运从业资格证题目技巧
- 2025年贵阳道路运输从业资格证考哪些项目
- 2025年珠海货运资格证考试题答案
- 2025年资阳货运资格证模拟考试题
- 办公区域学生酒吧的消费模式与市场潜力
- 企业高管家庭的财富管理策略
- 制造业智能化升级的挑战与对策分析
- 从传统制造到智能化深度探索工业4.0的技术趋势
- 儿童文学与孩子阅读兴趣的培养关系研究
- 2025年上半年中科院大连化学物理研究所金催化研究中心(2302组)招聘1人易考易错模拟试题(共500题)试卷后附参考答案
- 【项目方案】合同能源托管模式下开展校园综合能源建设方案-中教能研院
- 2024-2030年中国抗菌肽行业发展现状及前景趋势分析报告
- 功能科提高动态心电图检查人次PDCA
- 气球活动布置合同范例
- 医学综合英语学习通超星期末考试答案章节答案2024年
- DB14-T2551-2022公路隧道缺陷与病害处治及验收技术规范
- 工业自动化设备验收及实施方案
- 《智能网联汽车智能传感器测试与装调》电子教案
- 北京交通大学《数字图像处理》2022-2023学年期末试卷
- 2024年地理知识竞赛试题200题及答案
评论
0/150
提交评论