版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第10讲圆锥的侧面积【学习目标】1.体会圆锥侧面积的探索过程.2.会求圆锥的侧面积,并能解决一些简单的实际问题.重点:体会圆锥侧面积的探索过程,了解圆锥侧面积的计算公式,并会应用其解决问题.难点:会求圆锥的侧面积,并能解决一些简单的实际问题.【基础知识】一、圆柱的计算(1)圆柱的母线(高)等于展开后所得矩形的宽,圆柱的底面周长等于矩形的长.(2)圆柱的侧面积=底面圆的周长×高(3)圆柱的表面积=上下底面面积+侧面积(4)圆柱的体积=底面积×高.二、圆锥的计算(1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.(2)圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.(3)圆锥的侧面积:S侧•2πr•l=πrl.(4)圆锥的全面积:S全=S底+S侧=πr2+πrl(5)圆锥的体积底面积×高注意:①圆锥的母线与展开后所得扇形的半径相等.②圆锥的底面周长与展开后所得扇形的弧长相等.【考点剖析】一.圆锥的计算(共7小题)1.(2021秋•盱眙县期末)已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为()A.60 B.48 C.60π D.48π2.(2021秋•启东市期末)已知一个圆锥的母线长为是30,底面半径为10,则这个圆锥的侧面展开图的圆心角等于()A.90° B.100° C.120° D.150°3.(2022春•泰兴市校级月考)现有一个半径为7cm的半圆形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为cm.4.(2022春•张湾区校级月考)如图,小明用图中的扇形纸片作一个圆锥的侧面,已知扇形的圆心角为216°,面积是15πcm2,那么这个圆锥的底面半径是()A.2cm B.3cm C.4cm D.5cm5.(2021秋•金湖县期末)如图1中的某种冰激凌的外包装可以视为圆锥(如图2),制作这种外包装需要用如图3所示的等腰三角形材料,其中AB=AC,AD⊥BC将扇形EAF围成圆锥时,AE、AF恰好重合,已知这种加工材料的顶角∠BAC=90°.(1)求图2中圆锥底面圆直径ED与母线AD长的比值;(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图3中阴影部分)的面积.(结果保留π)6.(2021秋•海曙区期末)如图,扇形圆心角∠AOB=α,半径OA=6,把扇形做成圆锥后,其底面半径为2.(1)求α;(2)点C是OA上的一点,若OC=4,求S阴影.7.(2021秋•路北区期末)如图所示,扇形OAB的面积为4πcm2,∠AOB=90°,用这个扇形围成一个圆锥的侧面.求这个圆锥的底面圆的半径.二.圆柱的计算(共7小题)8.(2021春•白云区校级月考)将两边长分别是4m和6m的矩形以其一边所在的直线为轴旋转一周,所得的几何体的侧面积是cm2.9.(2021秋•香坊区校级期中)一个圆柱的底面半径是3分米,高2分米,它的侧面积是平方分米(π取3.14)10.(2018秋•广丰区期末)如图是某机器中的根空心钢立柱,高为h米,外半径为R米,内半径为r米,每立方米钢的重量为7.8吨,求:m根这样的空心钢立柱的总质量.11.(2021秋•法库县期中)将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4cm、宽为3cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?(结果保留π)12.(2021秋•让胡路区校级期末)计算制作一个圆柱体需要多少铁皮,应该计算的是()A.侧面积+一个底面积 B.侧面积 C.底面积 D.侧面积+两个底面积13.(2021秋•香坊区期末)一个圆柱体的侧面积是62.8cm2,高是2cm,则它的底面半径是()(π取3.14)A.3cm B.4cm C.5cm D.6cm14.(2021秋•龙凤区期末)一个表面积50平方厘米的圆柱体,底面积是15平方厘米,把3个这样的圆柱体拼成一个大圆柱体,这个大圆柱体的表面积是平方厘米.【过关检测】一.选择题(共8小题)1.(2022•锡山区一模)若圆柱的底面半径为3cm,母线长为4cm,则这个圆柱的侧面积为()A.12cm2 B.24cm2 C.12πcm2 D.24πcm22.(2022•周村区一模)如图,将半径为15cm的圆形纸片剪去圆心角为144°的一个扇形,用剩下的扇形围成一个圆锥的侧面(接缝忽略不计),这个圆锥的高是()A.8cm B.12cm C.20cm D.18cm3.(2022•潜江模拟)若圆锥的侧面积为18π,底面半径为3,则该圆锥的母线长是()A.3 B.4 C.5 D.64.(2022•陆良县模拟)如图是一个圆锥形冰淇淋外壳,已知其母线长为10cm,底面半径为3cm,则这个冰淇淋外壳的侧面展开图的圆心角度数为()A.108° B.120° C.144° D.150°5.(2022•西山区一模)如图,从一块半径为2m的圆形铁皮上剪出一个扇形ABC,且经过圆心O.如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为()mA.2 B.1 C. D.6.(2022•红河州一模)小琳准备用一张半径为30cm的扇形纸板,制作一个圆锥形的帽子(接缝忽路不计),如果圆锥形的帽子要做成底面半径为8cm,那么需要扇形纸板的面积是()A.120cm2 B.120πcm2 C.240cm2 D.240πcm27.(2022•宜兴市一模)如图,圆锥的轴截面是一个斜边为1的等腰直角三角形,则这个圆锥的侧面积是()A. B. C.π D.π8.(2021秋•东城区期末)如图所示,在长方形ABCD中,AB=a,BC=b,且a>b,将长方形ABCD绕边AB所在的直线旋转一周形成圆柱甲,再将长方形ABCD绕边BC所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分别为S甲、S乙.下列结论中正确的是()A.S甲>S乙 B.S甲<S乙 C.S甲=S乙 D.不确定二.填空题(共8小题)9.(2022•邳州市一模)已知圆锥的侧面积为50π,底面圆半径为5,则此圆锥的母线长为.10.(2022•无锡模拟)已知一个圆锥的侧面展开图是圆心角为120°,半径为3cm的扇形,则这个圆锥的底面圆周长是cm.11.(2022•连云港一模)小红用图中所示的扇形纸片制作一个圆锥形容器(接缝忽略不计)的侧面,已知扇形纸片的半径为5cm,圆心角为240°,那么这个圆锥形容器底面半径为cm.12.(2022春•眉山期中)已知圆锥的高为8cm,母线长为10cm,则圆锥侧面展开图的圆心角为°.13.(2022春•亭湖区校级期中)圆锥的母线长为3cm,底面圆的半径长为1cm,则该圆锥的侧面积为cm2.14.(2022•工业园区校级模拟)已知圆锥的底面半径为3cm,将其侧面展开后得到的扇形圆心角为120°,则此圆锥的母线长为cm.15.(2022•常山县模拟)一个圆柱的底面半径为5cm,母线长为6cm,则这个圆柱的侧面积为cm2.16.(2021秋•衢州期末)已知圆柱的底面半径为2cm,母线长为3cm,则这个圆柱的全面积为cm2.三.解答题(共7小题)17.(2021秋•金川区校级期末)在一块大铁皮上裁剪如图所示圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm,求裁剪的面积.18.(2021秋•原州区期末)如图,从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为多少?19.(2021秋•天心区期中)已知如图,扇形AOB的圆心角为120°,半径OA为9cm.(1)求扇形AOB的弧长和扇形面积;(2)若把扇形纸片AOB卷成一个圆锥形无底纸帽,求这个纸帽的高OH.20.(2022•怀宁县模拟)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,求圆锥的底面圆的半径.21.(2021秋•定西期末)如图,圆锥的底面半径OB=6,高OC=8,求该圆锥的侧面积.22.(2021秋•日照期中)如图,从一直径为1米的圆形铁皮中剪出一个圆心角为90度的最大扇形ABC.求:(1)剪掉后的剩余部分的面积;(2)用所剪得的扇形ABC围成一个圆锥,该圆锥的底面半径是多少?(3)如果从剪掉的部分中给圆锥配一个底,请问是否够用?23.(2020秋•朝阳区校级月考)如图①,水平放
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招标文件购买信用先行
- 旅店服务合同的性质分析
- 专业团队的笔译
- 短期借款人协议合同
- 房屋买卖合同标准模板
- 广场物业服务合同文本
- 面砖供应链合作协议
- 烟草制品保证
- 外加工与采购合同的更新
- 购房贷款合同范本模板示例
- 中国心力衰竭诊断和治疗指南2024解读
- 危重患者气道管理
- 探索·鄱阳湖智慧树知到期末考试答案章节答案2024年江西师范大学
- 2024年天津城市运营发展有限公司招聘笔试冲刺题(带答案解析)
- 机器人滚压包边DPCA-F12-001-2008
- 眼视光学理论与方法智慧树知到期末考试答案章节答案2024年温州医科大学
- B737NG 机型执照试题集
- 高中体育-篮球-单手肩上投篮教学设计学情分析教材分析课后反思
- 音乐鉴赏(西安交通大学)智慧树知到期末考试答案2024年
- 关于ESG体系相关研究的文献综述
- 四川音乐学院辅导员考试试题2024
评论
0/150
提交评论