版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试题PAGE1试题2024年大庆市初中升学考试数学一、选择题:本题10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合要求.1.下列各组数中,互为相反数的是()A.和 B.2024和C.和2024 D.和2.人体内一种细胞的直径约为1.56微米,相当于0.00000156米,数字0.00000156用科学记数法表示为()A. B. C. D.3.垃圾分类功在当代利在千秋,下列垃圾分类指引标志图形中,是轴对称图形又是中心对称图形的是()A. B. C. D.4.下列常见几何体中,主视图和左视图不同的是()A. B.C. D.5.“铁人王进喜纪念馆”“龙凤湿地公园”“滨水绿道”和“数字大庆中心”是大庆市四个有代表性的旅游景点.若小娜从这四个景点中随机选择两个景点游览,则这两个景点中有“铁人王进喜纪念馆”的概率是()A. B. C. D.6.下列说法正确的是()A.若,则B.一件衣服降价20%后又提价20%,这件衣服的价格不变C.一个锐角和一条边分别相等的两个直角三角形全等D.若一个多边形的内角和是外角和的2倍,则这个多边形是六边形7.如图,在一次综合实践课上,为检验纸带①、②的边线是否平行,小庆和小铁采用了两种不同的方法:小庆把纸带①沿折叠,量得;小铁把纸带②沿折叠,发现与重合,与重合.且点C,G,D在同一直线上,点E,H,F也在同一直线上.则下列判断正确的是()A.纸带①、②的边线都平行B.纸带①、②的边线都不平行C.纸带①的边线平行,纸带②的边线不平行D.纸带①的边线不平行,纸带②的边线平行8.在同一平面直角坐标系中,函数与的大致图象为()A. B.C. D.9.小庆、小铁、小娜、小萌四名同学均从,,,,,这六个数字中选出四个数字,玩猜数游戏.下列选项中,能确定该同学选出的四个数字含有1的是()A.小庆选出四个数字的方差等于 B.小铁选出四个数字的方差等于C.小娜选出四个数字的平均数等于 D.小萌选出四个数字的极差等于10.如图,在矩形中,,,点M是边的中点,点N是边上任意一点,将线段绕点M顺时针旋转,点N旋转到点,则周长的最小值为()A.15 B. C. D.18二、填空题:本题8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.11.计算:=___.12.已知,则的值是___________.13.如图所示,一个球恰好放在一个圆柱形盒子里,记球体积为,圆柱形盒子的容积为,则______.(球体体积公式:,其中r为球体半径)14.请写出一个过点且y的值随x值增大而减小的函数的解析式_____.15.不等式组的整数解有______个.16.如图所示的曲边三角形也称作“莱洛三角形”,它可以按下述方法作出:作等边三角形;分别以点,,为圆心,以的长为半径作,,.三段弧所围成的图形就是一个曲边三角形.若该“莱洛三角形”的周长为,则它的面积是______.17.如图①,直角三角形的两个锐角分别是40°和50°,其三边上分别有一个正方形.执行下面的操作:由两个小正方形向外分别作锐角为40°和50°的直角三角形,再分别以所得到的直角三角形的直角边为边长作正方形.图②是1次操作后的图形.图③是重复上述步骤若干次后得到的图形,人们把它称为“毕达哥拉斯树”.若图①中的直角三角形斜边长为2,则10次操作后图形中所有正方形的面积和为______.18.定义:若一个函数图象上存在纵坐标是横坐标2倍的点,则把该函数称为“倍值函数”,该点称为“倍值点”.例如:“倍值函数”,其“倍值点”为.下列说法不正确的序号为______.①函数是“倍值函数”;②函数的图象上的“倍值点”是和;③若关于x的函数的图象上有两个“倍值点”,则m的取值范围是;④若关于x的函数的图象上存在唯一的“倍值点”,且当时,n的最小值为k,则k的值为.三、解答题:本题10小题,共66分.请在答题卡指定区域内作答,解答应写出必要的文字说明、计算过程、证明过程.19.求值:.20.先化简,再求值:,其中.21.为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高元/度.市民小萌电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.22.如图,是一座南北走向的大桥,一辆汽车在笔直的公路上由北向南行驶,在处测得桥头在南偏东方向上,继续行驶米后到达处,测得桥头在南偏东方向上,桥头在南偏东方向上,求大桥的长度.(结果精确到米,参考数据:)23.根据教育部制定的《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织学生参加了国防知识竞赛,将学生的百分制成绩(x分)用5级记分法呈现:“”记为1分,“”记为2分,“”记为3分,“”记为4分,“”记为5分.现随机将全校学生以20人为一组进行分组,并从中随机抽取了3个小组的学生成绩进行整理,绘制统计图表,部分信息如下:
平均数中位数众数第1小组3.94a第2小组b3.55第3小组3.25c3请根据以上信息,完成下列问题:(1)①第2小组得分扇形统计图中,“得分为1分”这一项所对应圆心角为______度;②请补全第1小组得分条形统计图;(2)______,______,______;(3)已知该校共有4200名学生,以这3个小组的学生成绩作为样本,请你估计该校有多少名学生竞赛成绩不低于90分?24.如图,平行四边形中,、分别是,的平分线,且E、F分别在边,上.(1)求证:四边形是平行四边形;(2)若,,求的面积.25.“尔滨”火了,带动了黑龙江省的经济发展,农副产品也随之畅销全国.某村民在网上直播推销某种农副产品,在试销售的天中,第天且为整数)的售价为(元千克).当时,;当时,.销量(千克)与的函数关系式为,已知该产品第天的售价为元千克,第天的售价为元千克,设第天的销售额为(元).(1),_____;(2)写出第天的销售额与之间的函数关系式;(3)求在试销售的天中,共有多少天销售额超过元?26.如图1,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,点B,C在第一象限,四边形是平行四边形,点C在反比例函数的图象上,点C的横坐标为2,点B的纵坐标为3.提示:在平面直角坐标系中,若两点分别为,,则中点坐标为.(1)求反比例函数的表达式;(2)如图2,点D是边中点,且在反比例函数图象上,求平行四边形的面积;(3)如图3,将直线向上平移6个单位得到直线,直线与函数图象交于,两点,点P为的中点,过点作于点N.请直接写出P点坐标和的值.27.如图,为的内接三角形,为的直径,将沿直线翻折到,点在上.连接,交于点,延长,,两线相交于点,过点作的切线交于点.(1)求证:;(2)求证:;(3)若,.求的值.28.如图,已知二次函数的图象与轴交于,两点.点坐标为,与轴交于点,点为抛物线顶点,点为中点.(1)求二次函数的表达式;(2)在直线上方的抛物线上存在点,使得,求点的坐标;(3)已知,为抛物线上不与,重合的相异两点.①若点与点重合,,且,求证:,,三点共线;②若直线,交于点,则无论,在抛物线上如何运动,只要,,三点共线,,,中必存在面积为定值的三角形.请直接写出其中面积为定值的三角形及其面积,不必说明理由.2024大庆数学一、选择题:本题10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合要求.1.下列各组数中,互为相反数的是()A.和 B.2024和C.和2024 D.和【答案】A【解析】【分析】本题考查相反数.根据只有符号不同的两个数互为相反数,结合绝对值的意义逐项判断即可.【详解】解:A、和互为相反数,故A选项符合题意;B、2024和互为倒数,故B选项不符合题意;C、和2024不互为相反数,故C选项不符合题意;D、和不互为相反数,故D选项不符合题意;故选:A.2.人体内一种细胞的直径约为1.56微米,相当于0.00000156米,数字0.00000156用科学记数法表示为()A. B. C. D.【答案】C【解析】【分析】本题考查用科学记数法表示较小的数.一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.据此求解即可.【详解】解:数字0.00000156用科学记数法表示为,故选:C.3.垃圾分类功在当代利在千秋,下列垃圾分类指引标志图形中,是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念,中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C、不是轴对称图形,也不是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形与中心对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.中心对称图形的关键是确定对称中心,绕对称中心旋转能与自身重合,掌握以上知识是解题的关键.4.下列常见的几何体中,主视图和左视图不同的是()A B.C. D.【答案】B【解析】【分析】本题考查了简单几何体的三视图.分别分析四种几何体的主视图和左视图,找出主视图和左视图不同的几何体.【详解】解:A、圆台的主视图和左视图都是梯形,本选项不符合题意;B、圆柱的主视图是长方形,左视图是圆,本选项符合题意;C、圆锥的主视图与左视图相同,都是等腰三角形,本选项不符合题意;D、球的主视图和左视图相同,都是圆,本选项不符合题意.故选:B.5.“铁人王进喜纪念馆”“龙凤湿地公园”“滨水绿道”和“数字大庆中心”是大庆市四个有代表性的旅游景点.若小娜从这四个景点中随机选择两个景点游览,则这两个景点中有“铁人王进喜纪念馆”的概率是()A. B. C. D.【答案】D【解析】【分析】本题主要考查了树状图法或列表法求解概率,先列表得到所有等可能性的结果数,再找到选择两个景点中有“铁人王进喜纪念馆”的结果数,最后依据概率计算公式求解即可.【详解】解:设铁人王进喜纪念馆”“龙凤湿地公园”“滨水绿道”和“数字大庆中心”四个景点分别用A、B、C、D表示,列表如下:由表格可知一共有12种等可能性的结果数,其中选择“铁人王进喜纪念馆”的结果数有种,∴这两个景点中有“铁人王进喜纪念馆”的概率为,故选:D.6.下列说法正确的是()A.若,则B.一件衣服降价20%后又提价20%,这件衣服价格不变C.一个锐角和一条边分别相等的两个直角三角形全等D.若一个多边形的内角和是外角和的2倍,则这个多边形是六边形【答案】D【解析】【分析】本题考查了不等式的性质,一元一次方程的应用,全等三角形的判定,多边形的外角与内角和问题,逐项分析判断,即可求解.【详解】解:A.若,且,则,故该选项不正确,不符合题意;B.设原价为元,则提价%后的售价为:元;后又降价的售价为:元.一件衣服降价后又提价,这件衣服的价格相当于原价的,故该选项不正确,不符合题意;C.一个锐角和一条边分别相等的两个直角三角形不一定全等,相等的边不一定对应,故该选项不正确,不符合题意;D.设这个多边形的边数为,∴由题意得:,,,即这个多边形的边数是6;故该选项正确,符合题意;故选:D.7.如图,在一次综合实践课上,为检验纸带①、②的边线是否平行,小庆和小铁采用了两种不同的方法:小庆把纸带①沿折叠,量得;小铁把纸带②沿折叠,发现与重合,与重合.且点C,G,D在同一直线上,点E,H,F也在同一直线上.则下列判断正确的是()A.纸带①、②的边线都平行B.纸带①、②的边线都不平行C.纸带①的边线平行,纸带②的边线不平行D.纸带①的边线不平行,纸带②的边线平行【答案】D【解析】【分析】对于纸带①,根据对顶角相等可得,利用三角形内角和定理求得,再根据折叠的性质可得,由平行线的判定即可判断;对于纸带②,由折叠的性质得,,,由平角的定义从而可得,,再根据平行线的判定即可判断.【详解】解:对于纸带①,∵,∴,∴,由折叠的性质得,,∴,∴与不平行,对于纸带②,由折叠的性质得,,,又∵点C,G,D在同一直线上,点E,H,F也在同一直线上,∴,,∴,,∴,∴,综上所述,纸带①的边线不平行,纸带②的边线平行,故选:D.【点睛】本题考查平行线的判定、对顶角相等、三角形内角和定理、折叠的性质,熟练掌握平行线的判定和折叠的性质是解题的关键.8.在同一平面直角坐标系中,函数与的大致图象为()A. B.C. D.【答案】C【解析】【分析】本题考查了反比例函数与一次函数图象,根据一次函数与反比例函数的性质,逐项分析判断,即可求解.【详解】解:∵当时,一次函数经过第一、二、三象限,当时,一次函数经过第一、三、四象限A.一次函数中,则当时,函数图象在第四象限,不合题意,B.一次函数经过第二、三、四象限,不合题意,一次函数中,则当时,函数图象在第一象限,故C选项正确,D选项错误,故选:C.9.小庆、小铁、小娜、小萌四名同学均从,,,,,这六个数字中选出四个数字,玩猜数游戏.下列选项中,能确定该同学选出的四个数字含有1的是()A.小庆选出四个数字的方差等于 B.小铁选出四个数字的方差等于C.小娜选出四个数字的平均数等于 D.小萌选出四个数字的极差等于【答案】A【解析】【分析】本题考查了方差,平均数,极差的定义,掌握相关的知识是解题的关键.根据方差,平均数,极差的定义逐一判断即可.【详解】解:A、假设选出的数据没有,则选出的数据为,,,时,方差最大,此时,方差为;当数据为,,,时,,,故该选项符合题意;B、当该同学选出的四个数字为,,,时,,,故该选项不符合题意;C、当该同学选出的四个数字为,,,时,,故该选项不符合题意;D、当选出的数据为,,,或,,,时,极差也是,故该选项不符合题意;故选:A.10.如图,在矩形中,,,点M是边的中点,点N是边上任意一点,将线段绕点M顺时针旋转,点N旋转到点,则周长的最小值为()A.15 B. C. D.18【答案】B【解析】【分析】本题考查了旋转的性质,矩形的性质,勾股定理,确定点的轨迹是解题的关键.由旋转的性质结合证明,推出,得到点在平行于,且与的距离为5的直线上运动,作点关于直线的对称点,连接交直线于点,此时周长取得最小值,由勾股定理可求解.【详解】解:过点作,交于,过点作垂足为,∵矩形,∴,∴,∴四边形和都是矩形,∴,由旋转的性质得,,∴,∴,∴,∴点在平行于,且与的距离为5的直线上运动,作点关于直线的对称点,连接交直线于点,此时周长取得最小值,最小值为,∵,,∴,故选:B.二、填空题:本题8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.11.计算:=___.【答案】﹣2【解析】【分析】根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a的立方根.【详解】∵(-2)3=-8,∴,故答案为:-212.已知,则的值是___________.【答案】3【解析】【分析】根据,通过平方变形可以求得所求式子的值.【详解】解:∵,∴,∴,∴,故答案为:3.【点睛】本题考查分式的化简求值,解答本题的关键是熟练掌握完全平方公式.13.如图所示,一个球恰好放在一个圆柱形盒子里,记球的体积为,圆柱形盒子的容积为,则______.(球体体积公式:,其中r为球体半径)【答案】【解析】【分析】题考查了圆柱的体积和球的体积,根据圆柱的体积和球的体积公式计算即可得出答案.【详解】解:设球的半径为,则圆柱的高为,依题意,,∴,故答案为:.14.请写出一个过点且y的值随x值增大而减小的函数的解析式_____.【答案】(答案不唯一)【解析】【分析】本题主要考查了函数的增减性,待定系数法求函数解析式.写出一个一次项系数为负数且经过点的一次函数即可.【详解】解:设满足题意得的一次函数的关系式为,代入得:,,∴满足题意的一次函数的解析式为.故答案为:(答案不唯一).15.不等式组的整数解有______个.【答案】【解析】【分析】本题主要考查了求不等式组的整数解,先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而求出其整数解即可.【详解】解:解不等式①得:解不等式②得:∴不等式组的解集为:,∴整数解有,,,共4个,故答案为:.16.如图所示的曲边三角形也称作“莱洛三角形”,它可以按下述方法作出:作等边三角形;分别以点,,为圆心,以的长为半径作,,.三段弧所围成的图形就是一个曲边三角形.若该“莱洛三角形”的周长为,则它的面积是______.【答案】【解析】【分析】本题考查了弧长的计算,扇形面积的计算,三角函数的应用,曲边三角形是由三段弧组成,如果周长为,则其中的一段弧长就是,所以根据弧长公式可得,即正三角形的边长为.那么曲边三角形的面积=三角形的面积+三个弓形的面积,从而可得答案.【详解】解:曲边三角形的周长为,为等边三角形,曲边三角形的面积为:故答案为:.17.如图①,直角三角形的两个锐角分别是40°和50°,其三边上分别有一个正方形.执行下面的操作:由两个小正方形向外分别作锐角为40°和50°的直角三角形,再分别以所得到的直角三角形的直角边为边长作正方形.图②是1次操作后的图形.图③是重复上述步骤若干次后得到的图形,人们把它称为“毕达哥拉斯树”.若图①中的直角三角形斜边长为2,则10次操作后图形中所有正方形的面积和为______.【答案】48【解析】【分析】本题主要考查了图形规律,直角三角形的性质、勾股定理、正方形的性质等知识.根据题意分别计算出图①、图②和图③的面积,得出规律即可求解.【详解】解:图①中,∵,根据勾股定理得,,∴图①中所有正方形面积和为:,图②中所有正方形面积和,即1次操作后的图形中所有正方形的面积和为:,图③中所有正方形面积和,即2次操作后的图形中所有正方形的面积和为:,⋯∴n次操作后的图形中所有正方形的面积和为,∴10次操作后的图形中所有正方形的面积和为,故答案为:48.18.定义:若一个函数图象上存在纵坐标是横坐标2倍的点,则把该函数称为“倍值函数”,该点称为“倍值点”.例如:“倍值函数”,其“倍值点”为.下列说法不正确的序号为______.①函数是“倍值函数”;②函数的图象上的“倍值点”是和;③若关于x的函数的图象上有两个“倍值点”,则m的取值范围是;④若关于x的函数的图象上存在唯一的“倍值点”,且当时,n的最小值为k,则k的值为.【答案】①③④【解析】【分析】本题考查了新定义问题,二次函数的图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,二次函数的最值问题.根据“倍值函数”的定义,逐一判断即可.【详解】解:①函数中,令,则,无解,故函数不是“倍值函数”,故①说法错误;②函数中,令,则,解得或,经检验或都是原方程的解,故函数的图象上的“倍值点”是和,故②说法正确;③在中,令,则,整理得,∵关于x的函数的图象上有两个“倍值点”,∴且,解得且,故③说法错误;④在中,令,则,整理得,∵该函数的图象上存在唯一的“倍值点”,∴,整理得,∴对称轴为,此时n的最小值为,根据题意分类讨论,,解得;,无解;,解得或(舍去),综上,k的值为0或,故④说法错误;故答案为:①③④.三、解答题:本题10小题,共66分.请在答题卡指定区域内作答,解答应写出必要的文字说明、计算过程、证明过程.19.求值:.【答案】1【解析】【分析】本题主要考查了实数运算.直接利用特殊角的三角函数值以及零指数幂的性质、绝对值的性质分别化简即可得出答案.【详解】解:.20.先化简,再求值:,其中.【答案】,【解析】【分析】本题考查了分式的化简求值.原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【详解】解:,当时,原式.21.为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.【答案】该市谷时电价元/度【解析】【分析】本题考查了分式方程的应用,设该市谷时电价为元/度,则峰时电价元/度,根据题意列出分式方程,解方程并检验,即可求解.【详解】解:设该市谷时电价为元/度,则峰时电价元/度,根据题意得,,解得:,经检验是原方程的解,答:该市谷时电价元/度.22.如图,是一座南北走向的大桥,一辆汽车在笔直的公路上由北向南行驶,在处测得桥头在南偏东方向上,继续行驶米后到达处,测得桥头在南偏东方向上,桥头在南偏东方向上,求大桥的长度.(结果精确到米,参考数据:)【答案】米【解析】【分析】本题考查了解直角三角形的应用,分别过点作的垂线,垂足分别为,根据题意得出,解求得,,进而求得,根据,即可求解.【详解】解:如图所示,分别过点作的垂线,垂足分别为,∴四边形是矩形,∴,,依题意,,∴,∴,∴;在中,,;中,,∴.答:大桥的长度约为米.23.根据教育部制定的《国防教育进中小学课程教材指南》.某中学开展了形式多样的国防教育培训活动.为了解培训效果,该校组织学生参加了国防知识竞赛,将学生的百分制成绩(x分)用5级记分法呈现:“”记为1分,“”记为2分,“”记为3分,“”记为4分,“”记为5分.现随机将全校学生以20人为一组进行分组,并从中随机抽取了3个小组的学生成绩进行整理,绘制统计图表,部分信息如下:
平均数中位数众数第1小组3.94a第2小组b3.55第3小组3.25c3请根据以上信息,完成下列问题:(1)①第2小组得分扇形统计图中,“得分为1分”这一项所对应的圆心角为______度;②请补全第1小组得分条形统计图;(2)______,______,______;(3)已知该校共有4200名学生,以这3个小组的学生成绩作为样本,请你估计该校有多少名学生竞赛成绩不低于90分?【答案】(1)①18;②(2)5;;3(3)估计该校约有名学生竞赛成绩不低于90分.【解析】【分析】(1)①用乘以第2小组“得分为1分”这一项的占比即可求解;②求得第1小组“得分为4分”这一项的人数即可补全第1小组得分条形统计图;(2)根据众数、平均数和中位数的定义即可求解;(3)利用样本估计总体即可求解.【小问1详解】解:①第2小组得分扇形统计图中,“得分为1分”这一项所对应的圆心角为,故答案为:18;②第1小组“得分为4分”这一项的人数为(人),补全第1小组得分条形统计图如下,;【小问2详解】解:第1小组中“得分为5分”这一项的人数最多,则,第2小组的平均分为(分),则,第3小组的中位数为第10和11个数,都是3(分),则,故答案为:5;;3;【小问3详解】解:(人),答:估计该校约有名学生竞赛成绩不低于90分.【点睛】本题考查的是条形统计图,扇形统计图和折线统计图,中位数、众数和平均数,样本估计总体.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.如图,平行四边形中,、分别是,的平分线,且E、F分别在边,上.(1)求证:四边形是平行四边形;(2)若,,求的面积.【答案】(1)见解析(2).【解析】【分析】(1)由平行四边形的性质得到,,结合角平分线的条件得到,由得到,,根据平行线的判定得到,根据平行四边形的判定即可得到是平行四边形;(2)求得是等边三角形,得到,,证明,求得,作于点,在中,求得,据此求解即可.【小问1详解】证明:∵四边形是平行四边形,∴,,∵分别是、的平分线,∴,,∴,∵,∴,∴,∴,∴四边形是平行四边形;【小问2详解】解:由(1)得,,∴,∵,∴是等边三角形,∴,∵,∴,,∵,∴,∴,∴,作于点,在中,,,∴,∴.【点睛】本题考查了解直角三角形,相似三角形的判定和性质,勾股定理,平行四边形的判定和性质,等边三角形的判定和性质.正确引出辅助线解决问题是解题的关键.25.“尔滨”火了,带动了黑龙江省的经济发展,农副产品也随之畅销全国.某村民在网上直播推销某种农副产品,在试销售的天中,第天且为整数)的售价为(元千克).当时,;当时,.销量(千克)与的函数关系式为,已知该产品第天的售价为元千克,第天的售价为元千克,设第天的销售额为(元).(1),_____;(2)写出第天的销售额与之间的函数关系式;(3)求在试销售的天中,共有多少天销售额超过元?【答案】(1),(2)(3)在试销售的天中,共有天销售额超过元【解析】【分析】本题考查了一次函数与二次函数综合应用;(1)待定系数法求解析式,即可求解;(2)根据销售额等于销量乘以售价,分段列出函数关系式,即可求解;(3)根据题意,根据,列出方程,解方程,即可求解.【小问1详解】解:依题意,将,代入,∴解得:∴故答案为:,.【小问2详解】解:依题意,当时,当时,∴【小问3详解】解:依题意,当时,当时,解得:为正整数,∴第天至第天,销售额超过元(天)答:在试销售的天中,共有天销售额超过元26.如图1,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,点B,C在第一象限,四边形是平行四边形,点C在反比例函数的图象上,点C的横坐标为2,点B的纵坐标为3.提示:在平面直角坐标系中,若两点分别为,,则中点坐标为.(1)求反比例函数的表达式;(2)如图2,点D是边的中点,且在反比例函数图象上,求平行四边形的面积;(3)如图3,将直线向上平移6个单位得到直线,直线与函数图象交于,两点,点P为的中点,过点作于点N.请直接写出P点坐标和的值.【答案】(1)(2)9(3)【解析】【分析】(1)根据平行四边形的性质可得,再利用待定系数法求反比例函数解析式即可;(2)设,根据平行四边形的性质可得,利用中点坐标公式可得,再把点D代入反比例函数解析式求得,即可求解;(3)由一次函数平移规律可得直线:,联立方程组得,设、,即,利用中点坐标公式求得点P的横坐标为4,即可得,再利用勾股定理求得,求得直线与x、y轴的交点、,利用勾股定理求得,可得,过点O作,由平行线定理可得,利用锐角三角函数求得,即可求解.【小问1详解】解:∵四边形是平行四边形,∴,∵点B的纵坐标为3.∴,把代入得,,∴反比例函数表达式为;【小问2详解】解:设,∵四边形是平行四边形,∴,∵,∴,∵点D是边的中点,∴,即,∵点D在反比例函数图象上,把代入得,,解得,∴,∴;【小问3详解】解:∵将直线向上平移6个单位得到直线:,∵直线与函数图象交于,两点,∴联立方程组得,,即,设、,∴,∵点P为的中点,∴点P的横坐标为,把代入得,,∴,∴,把代入得,,把代入得,,解得,∴直线与x、y轴交于点、,∴,,∴,∴,过点O作,∵,∴,∵,∴,∴,∴.【点睛】本题考查平行四边形的性质、中点坐标公式、一次函数的平移规律、一次函数与反比例函数的交点问题、锐角三角函数、平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北邢台地区2023-2024学年上学期期末考试九年级理综试卷-初中化学
- 领导家电行业的品牌发展计划
- 2025年河南省八省联考高考地理模拟试卷
- 2022年安徽省安庆市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年河南省平顶山市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2023年湖南省岳阳市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2022年山西省朔州市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 英文商务邀请函范本
- 福建省宁德市(2024年-2025年小学六年级语文)部编版阶段练习(上学期)试卷及答案
- 2024年免疫抗疲劳保健品项目项目投资申请报告代可行性研究报告
- 2024年度科研机构实验技术人员劳务派遣合作框架
- 2023年中职《计算机网络技术》秋季学期期末考试试卷(附答案)
- 法治副校长进校园教育
- 北京市石景山区2023-2024学年七年级上学期期末考试数学试卷(含答案)
- 2025版寒假特色作业
- 江西省吉安市2023-2024学年高一上学期1月期末考试政治试题(解析版)
- 国内外航空安全形势
- 零售业发展现状与面临的挑战
- 2024年版汽车4S店商用物业租赁协议版B版
- 广东省公务员考试笔试真题及答案
- 一次风机动叶调节装置故障原因分析及处理
评论
0/150
提交评论