陕西省汉滨区2025届高三下学期联合考试数学试题含解析_第1页
陕西省汉滨区2025届高三下学期联合考试数学试题含解析_第2页
陕西省汉滨区2025届高三下学期联合考试数学试题含解析_第3页
陕西省汉滨区2025届高三下学期联合考试数学试题含解析_第4页
陕西省汉滨区2025届高三下学期联合考试数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省汉滨区2025届高三下学期联合考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()A.30° B.45° C.60° D.75°3.设,集合,则()A. B. C. D.4.已知集合,,,则的子集共有()A.个 B.个 C.个 D.个5.已知集合,,则()A. B.C. D.6.在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则()A. B. C. D.7.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.△ABC中,AB=3,,AC=4,则△ABC的面积是()A. B. C.3 D.9.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1 B. C. D.210.已知数列满足,则()A. B. C. D.11.设全集,集合,,则()A. B. C. D.12.用数学归纳法证明1+2+3+⋯+n2=n4A.k2+1C.k2+1二、填空题:本题共4小题,每小题5分,共20分。13.已知实数满约束条件,则的最大值为___________.14.函数的值域为_____.15.函数的值域为_________.16.一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等.在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在ABC中,角A,B,C的对边分别为a,b,c,已知,(Ⅰ)求的大小;(Ⅱ)若,求面积的最大值.18.(12分)在中,a,b,c分别是角A,B,C的对边,并且.(1)已知_______________,计算的面积;请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求的最大值.19.(12分)有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表:送餐单数3839404142甲公司天数101015105乙公司天数101510105(1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率;(2)假设同一公司的送餐员一天的送餐单数相同,将频率视为概率,回答下列两个问题:①求乙公司送餐员日工资的分布列和数学期望;②小张打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?说明你的理由.20.(12分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段的长.21.(12分)已知数列满足,等差数列满足,(1)分别求出,的通项公式;(2)设数列的前n项和为,数列的前n项和为证明:.22.(10分)已知,,分别是三个内角,,的对边,.(1)求;(2)若,,求,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

设,整理得到方程组,解方程组即可解决问题.【详解】设,因为,所以,所以,解得:,所以复数在复平面内对应的点为,此点位于第四象限.故选D【点睛】本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题.2、C【解析】

如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.3、B【解析】

先化简集合A,再求.【详解】由得:,所以,因此,故答案为B【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.4、B【解析】

根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.5、C【解析】

求出集合,计算出和,即可得出结论.【详解】,,,.故选:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.6、C【解析】

利用诱导公式以及二倍角公式,将化简为关于的形式,结合终边所在的直线可知的值,从而可求的值.【详解】因为,且,所以.故选:C.【点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解值的两种方法:(1)分别求解出的值,再求出结果;(2)将变形为,利用的值求出结果.7、A【解析】

作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.【详解】作出函数的图象如图,由图可知,,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,∴切线斜率为,∴k的取值范围是,∴函数有两个零点”是“”的充分不必要条件,故选A.【点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.8、A【解析】

由余弦定理求出角,再由三角形面积公式计算即可.【详解】由余弦定理得:,又,所以得,故△ABC的面积.故选:A【点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.9、C【解析】

由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解【详解】由题中图像可得,由变速直线运动的路程公式,可得.所以物体在间的运动路程是.故选:C【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.10、C【解析】

利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.11、D【解析】

求解不等式,得到集合A,B,利用交集、补集运算即得解【详解】由于故集合或故集合故选:D【点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.12、C【解析】

首先分析题目求用数学归纳法证明1+1+3+…+n1=n4【详解】当n=k时,等式左端=1+1+…+k1,当n=k+1时,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故选:C.【点睛】本题主要考查数学归纳法,属于中档题./二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】

画出可行域和目标函数,根据平移计算得到答案.【详解】根据约束条件,画出可行域,图中阴影部分为可行域.又目标函数表示直线在轴上的截距,由图可知当经过点时截距最大,故的最大值为8.故答案为:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.14、【解析】

利用配方法化简式子,可得,然后根据观察法,可得结果.【详解】函数的定义域为所以函数的值域为故答案为:【点睛】本题考查的是用配方法求函数的值域问题,属基础题。15、【解析】

利用换元法,得到,利用导数求得函数的单调性和最值,即可得到函数的值域,得到答案.【详解】由题意,可得,令,,即,则,当时,,当时,,即在为增函数,在为减函数,又,,,故函数的值域为:.【点睛】本题主要考查了三角函数的最值,以及利用导数研究函数的单调性与最值,其中解答中合理利用换元法得到函数,再利用导数求解函数的单调性与最值是解答的关键,着重考查了推理与预算能力,属于基础题.16、【解析】

利用相互独立事件概率的乘法公式即可求解.【详解】第1次传播,谣言一定不会回到最初的人;从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,没有被选中的概率是.次传播是相互独立的,故为故答案为:【点睛】本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

分析:(1)利用正弦定理以及诱导公式与和角公式,结合特殊角的三角函数值,求得角C;(2)运用向量的平方就是向量模的平方,以及向量数量积的定义,结合基本不等式,求得的最大值,再由三角形的面积公式计算即可得到所求的值.详解:(1)∵,,(Ⅱ)取中点,则,在中,,(注:也可将两边平方)即,,所以,当且仅当时取等号.此时,其最大值为.点睛:该题考查的是有关三角形的问题,涉及到的知识点有正弦定理,诱导公式,和角公式,向量的平方即为向量模的平方,基本不等式,三角形的面积公式,在解题的过程中,需要正确使用相关的公式进行运算即可求得结果.18、(1)见解析(2)1【解析】

(1)选②,③.可得,结合,求得.即可;若选①,②.由可得由,求得.即可;若选①,③,可得,又,可得,即可;(2)化简,根据角的范围求最值即可.【详解】(1)若选②,③.,,,,又,.的面积.若选①,②.由可得,,,又,.的面积.若选①,③,,又,,可得,的面积.(2),当时,有最大值1.【点睛】本题考查了正余弦定理,三角三角恒等变形,考查了计算能力,属于中档题.19、(1);(2)①分布列见解析,;②小张应选择甲公司应聘.【解析】

(1)记抽取的3天送餐单数都不小于40为事件,可得(A)的值.(2)①设乙公司送餐员送餐单数为,可得当时,,以此类推可得:当时,当时,的值.当时,的值,同理可得:当时,.的所有可能取值.可得的分布列及其数学期望.②依题意,甲公司送餐员日平均送餐单数.可得甲公司送餐员日平均工资,与乙数学期望比较即可得出.【详解】解:(1)由表知,50天送餐单数中有30天的送餐单数不小于40单,记抽取的3天送餐单数都不小于40为事件,则.(2)①设乙公司送餐员的送餐单数为,日工资为元,则当时,;当时,;当时,;当时,;当时,.所以的分布列为228234240247254.②依题意,甲公司送餐员的日平均送餐单数为,所以甲公司送餐员的日平均工资为元,因为,所以小张应选择甲公司应聘.【点睛】本题考查了随机变量的分布列与数学期望、古典概率计算公式、组合计算公式,考查了推理能力与计算能力,属于中档题.20、(1)l:,C:;(2)【解析】

(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换;

(2)由(1)可得曲线是圆,求出圆心坐标及半径,再求得圆心到直线的距离,即可求得的长.【详解】(1)由题意可得直线:,由,得,即,所以曲线C:.(2)由(1)知,圆,半径.∴圆心到直线的距离为:.∴【点睛】本题考查直线的普通坐标方程、曲线的直角坐标方程的求法,考查弦长的求法、运算求解能力,是中档题.21、(1)(2)证明见解析【解析】

(1)因为,所以,所以,即,又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论