新疆昌吉回族自治州昌吉州第二中学2025届高考冲刺押题(最后一卷)数学试卷含解析_第1页
新疆昌吉回族自治州昌吉州第二中学2025届高考冲刺押题(最后一卷)数学试卷含解析_第2页
新疆昌吉回族自治州昌吉州第二中学2025届高考冲刺押题(最后一卷)数学试卷含解析_第3页
新疆昌吉回族自治州昌吉州第二中学2025届高考冲刺押题(最后一卷)数学试卷含解析_第4页
新疆昌吉回族自治州昌吉州第二中学2025届高考冲刺押题(最后一卷)数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆昌吉回族自治州昌吉州第二中学2025届高考冲刺押题(最后一卷)数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,,则的大小关系是()A. B. C. D.2.某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为A. B. C. D.3.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是A. B. C. D.4.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()A.2 B. C. D.5.已知函数在上有两个零点,则的取值范围是()A. B. C. D.6.下列命题中,真命题的个数为()①命题“若,则”的否命题;②命题“若,则或”;③命题“若,则直线与直线平行”的逆命题.A.0 B.1 C.2 D.37.执行如图所示的程序框图,则输出的结果为()A. B. C. D.8.已知函数满足当时,,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是()A. B. C. D.9.若,则函数在区间内单调递增的概率是()A.B.C.D.10.已知,则的值构成的集合是()A. B. C. D.11.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②12.已知复数z满足,则z的虚部为()A. B.i C.–1 D.1二、填空题:本题共4小题,每小题5分,共20分。13.若曲线(其中常数)在点处的切线的斜率为1,则________.14.“石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则平局;若不同,则石头克剪子,剪子克布,布克石头.甲、乙两人玩一次该游戏,则甲不输的概率是______.15.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=)16.设等差数列的前项和为,若,,则数列的公差________,通项公式________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥的底面中,,,平面,是的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.18.(12分)如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明::(2)求直线与平面所成角的正弦值;(3)若为棱上一点,满足,求二面角的余弦值.19.(12分)已知等差数列{an}的各项均为正数,Sn为等差数列{an}的前n项和,.(1)求数列{an}的通项an;(2)设bn=an⋅3n,求数列{bn}的前n项和Tn.20.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差为,等差数列的公差为.设分别是数列的前项和,且,,(1)求数列的通项公式;(2)设,求数列的前项和.21.(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及.22.(10分)如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.(1)证明:AP∥平面EBD;(2)证明:BE⊥PC.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

选取中间值和,利用对数函数,和指数函数的单调性即可求解.【详解】因为对数函数在上单调递增,所以,因为对数函数在上单调递减,所以,因为指数函数在上单调递增,所以,综上可知,.故选:A【点睛】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型.2、C【解析】

由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C.3、B【解析】

初始:,,第一次循环:,,继续循环;第二次循环:,,此时,满足条件,结束循环,所以判断框内填入的条件可以是,所以正整数的最小值是3,故选B.4、C【解析】

将用向量和表示,代入可求出,再利用投影公式可得答案.【详解】解:,得,则向量在上的投影为.故选:C.【点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.5、C【解析】

对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】∵,.当时,,在上单调递增,不合题意.当时,,在上单调递减,也不合题意.当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.6、C【解析】

否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确.【详解】①的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;②的逆否命题为“若且,则”,该命题为真命题,故②为真命题;③的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【点睛】本题考查判断命题真假.判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:①若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;②判定“若,则”是假命题,只需举一反例即可.7、D【解析】循环依次为直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8、C【解析】

先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.【详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选:C.【点睛】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.9、B【解析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.10、C【解析】

对分奇数、偶数进行讨论,利用诱导公式化简可得.【详解】为偶数时,;为奇数时,,则的值构成的集合为.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.11、C【解析】

①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.12、C【解析】

利用复数的四则运算可得,即可得答案.【详解】∵,∴,∴,∴复数的虚部为.故选:C.【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用导数的几何意义,由解方程即可.【详解】由已知,,所以,解得.故答案为:.【点睛】本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.14、【解析】

用树状图法列举出所有情况,得出甲不输的结果数,再计算即得.【详解】由题得,甲、乙两人玩一次该游戏,共有9种情况,其中甲不输有6种可能,故概率为.故答案为:【点睛】本题考查随机事件的概率,是基础题.15、>【解析】

根据方差计算公式,计算出的表达式,由此利用差比较法,比较出两者的大小关系.【详解】,故.,.要比较的大小,只需比较与,两者作差并化简得①,由于为互不相等的正实数,故,也即,也即.故答案为:【点睛】本小题主要考查随机变量期望和方差的计算,考查差比较法比较大小,考查运算求解能力,属于难题.16、2【解析】

直接利用等差数列公式计算得到答案.【详解】,,解得,,故.故答案为:2;.【点睛】本题考查了等差数列的基本计算,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)详见解析;(Ⅱ);(Ⅲ)存在,点为线段的中点.【解析】

(Ⅰ)连结,,,则四边形为平行四边形,得到证明.(Ⅱ)建立如图所示坐标系,平面法向量为,平面的法向量,计算夹角得到答案.(Ⅲ)设,计算,,根据垂直关系得到答案.【详解】(Ⅰ)连结,,,则四边形为平行四边形.平面.(Ⅱ)平面,四边形为正方形.所以,,两两垂直,建立如图所示坐标系,则,,,,设平面法向量为,则,连结,可得,又所以,平面,平面的法向量,设二面角的平面角为,则.(Ⅲ)线段上存在点使得,设,,,,所以点为线段的中点.【点睛】本题考查了线面平行,二面角,根据垂直关系确定位置,意在考查学生的计算能力和空间想象能力.18、(1)证明见解析(2)(3)【解析】

(1)根据题意以为坐标原点,建立空间直角坐标系,写出各个点的坐标,并表示出,由空间向量数量积运算即可证明.(2)先求得平面的法向量,即可求得直线与平面法向量夹角的余弦值,即为直线与平面所成角的正弦值;(3)由点在棱上,设,再由,结合,由空间向量垂直的坐标关系求得的值.即可表示出.求得平面和平面的法向量,由空间向量数量积的运算求得两个平面夹角的余弦值,再根据二面角的平面角为锐角即可确定二面角的余弦值.【详解】(1)证明:∵底面,,以为坐标原点,建立如图所示的空间直角坐标系,∵,,点为棱的中点.∴,,,,,,.(2),设平面的法向量为.则,代入可得,令解得,即,设直线与平面所成角为,由直线与平面夹角可知所以直线与平面所成角的正弦值为.(3),由点在棱上,设,故,由,得,解得,即,设平面的法向量为,由,得,令,则取平面的法向量,则二面角的平面角满足,由图可知,二面角为锐二面角,故二面角的余弦值为.【点睛】本题考查了空间向量的综合应用,由空间向量证明线线垂直,求直线与平面夹角及平面与平面形成的二面角大小,计算量较大,属于中档题.19、(1).(2)【解析】

(1)先设等差数列{an}的公差为d(d>0),然后根据等差数列的通项公式及已知条件可列出关于d的方程,解出d的值,即可得到数列{an}的通项an;(2)先根据第(1)题的结果计算出数列{bn}的通项公式,然后运用错位相减法计算前n项和Tn.【详解】(1)由题意,设等差数列{an}的公差为d(d>0),则a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an⋅3n•3n=(2n+1)•3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)•3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)•3n﹣1+(2n+1)•3n,两式相减,可得:﹣2Tn=3×1+2×31+2×32+…+2•3n﹣1﹣(2n+1)•3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)•3n=3+2(2n+1)•3n=﹣2n•3n,∴Tn=n•3n.【点睛】本题主要考查等差数列基本量的计算,以及运用错位相减法计算前n项和.考查了转化与化归思想,方程思想,错位相减法的运用,以及逻辑思维能力和数学运算能力.属于中档题.20、(1);(2)【解析】

方案一:(1)根据等差数列的通项公式及前n项和公式列方程组,求出和,从而写出数列的通项公式;(2)由第(1)题的结论,写出数列的通项,采用分组求和、等比求和公式以及裂项相消法,求出数列的前项和.其余两个方案与方案一的解法相近似.【详解】解:方案一:(1)∵数列都是等差数列,且,,解得,综上(2)由(1)得:方案二:(1)∵数列都是等差数列,且,解得,.综上,(2)同方案一方案三:(1)∵数列都是等差数列,且.,解得,,.综上,(2)同方案一【点睛】本题考查了等差数列的通项公式、前n项和公式的应用,考查了分组求和、等比求和及裂项相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论