青岛大学《包装与设计》2023-2024学年第一学期期末试卷_第1页
青岛大学《包装与设计》2023-2024学年第一学期期末试卷_第2页
青岛大学《包装与设计》2023-2024学年第一学期期末试卷_第3页
青岛大学《包装与设计》2023-2024学年第一学期期末试卷_第4页
青岛大学《包装与设计》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页青岛大学《包装与设计》

2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉在无人驾驶飞行器(UAV)中的应用可以实现自主导航和环境感知。假设一个UAV需要在复杂的环境中飞行并避开障碍物。以下关于计算机视觉在UAV中的描述,哪一项是错误的?()A.可以通过视觉传感器获取周围环境的信息,包括地形、建筑物和其他障碍物B.能够实时分析图像,计算与障碍物的距离和相对速度,为飞行决策提供依据C.计算机视觉在UAV中的应用完全不需要与其他传感器(如惯性测量单元)的数据融合D.可以利用深度学习算法进行端到端的飞行控制,实现自主飞行2、在计算机视觉的三维重建任务中,假设要从一组二维图像恢复出物体的三维结构。以下关于三维重建方法的描述,正确的是:()A.基于立体视觉的方法需要多视角的图像,并且对相机的标定精度要求不高B.结构光方法能够快速准确地获取物体表面的三维信息,但对环境光敏感C.从运动中恢复结构(SfM)方法只适用于静态场景,无法处理动态物体D.所有的三维重建方法都能够生成高精度的、完整的物体三维模型3、在计算机视觉中,图像检索是根据用户的需求从图像数据库中查找相关的图像。以下关于图像检索的说法,错误的是()A.图像检索可以基于图像的内容,如颜色、形状和纹理等特征B.深度学习方法可以学习到更具语义的图像表示,提高图像检索的准确性C.图像检索在电子商务、数字图书馆和图像搜索引擎等领域有广泛的应用D.图像检索的性能只取决于图像特征的提取,与数据库的组织和索引无关4、目标检测是计算机视觉中的常见任务,例如在监控视频中检测行人或车辆。假设我们要开发一个目标检测系统,以下关于目标检测算法的描述,哪一项是不正确的?()A.基于区域建议的方法,如R-CNN系列算法,通过生成候选区域并对其进行分类和定位来实现目标检测B.一阶段目标检测算法,如YOLO和SSD,直接在图像上进行目标的分类和定位,速度相对较快C.目标检测算法的性能通常用准确率、召回率和平均精度均值(mAP)等指标来评估D.目标检测算法的精度和速度是相互独立的,提高精度不会影响速度,反之亦然5、在计算机视觉的图像分割任务中,假设要将一张医学图像中的病变区域精确地分割出来,以便医生进行诊断和治疗。这张医学图像可能存在噪声、模糊和不均匀的灰度分布。以下哪种图像分割方法在处理这种复杂情况时可能更具优势?()A.基于阈值的分割方法,根据像素值设定阈值进行分割B.基于区域生长的分割方法,从种子点开始逐渐扩展区域C.基于深度学习的语义分割算法,如U-NetD.随机分割图像,然后根据后续分析进行调整6、当进行图像的风格迁移任务时,假设要将一张照片的风格转换为著名绘画的风格,同时保留照片的内容结构。以下哪种方法在实现这一目标时可能更有效?()A.使用基于卷积神经网络的风格迁移算法,如Gatys等人提出的方法B.对图像进行简单的色彩变换和滤镜处理C.随机改变图像的像素值来模拟风格迁移D.只对图像的边缘进行处理,忽略内部区域7、在计算机视觉的图像生成任务中,除了生成新的图像,还可以对已有图像进行风格转换。假设我们要将一张照片转换为油画风格,以下哪种方法能够实现逼真的风格转换效果?()A.基于图像滤波和变换的方法B.基于深度学习的风格迁移算法,如CycleGANC.基于图像融合和合成的方法D.基于颜色映射和纹理合成的方法8、在计算机视觉中,以下哪种方法常用于图像的语义分割中的多尺度特征融合?()A.特征金字塔B.空洞卷积C.注意力机制D.以上都是9、在图像去噪中,BM3D(Block-Matchingand3DFiltering)算法的优势在于()A.去噪效果好B.保持图像细节C.计算效率高D.以上都是10、假设要开发一个能够自动识别水果种类和品质的计算机视觉系统,用于水果分拣和质量评估。在获取水果图像时,可能会受到光照、角度和遮挡等因素的影响。为了提高识别的准确性和鲁棒性,以下哪种图像预处理技术可能是关键?()A.图像增强B.图像去噪C.图像归一化D.图像分割11、在计算机视觉的图像压缩任务中,需要在减少数据量的同时尽量保持图像的质量。假设要对一组高清图像进行压缩,以节省存储空间和传输带宽,同时要求解压后的图像能够满足一定的视觉要求。以下哪种图像压缩算法在这种情况下效果较好?()A.JPEG压缩算法B.PNG压缩算法C.WebP压缩算法D.BPG压缩算法12、当利用计算机视觉技术对医学影像(如X光、CT等)进行分析,辅助医生进行疾病诊断时,需要从大量的图像数据中提取有价值的特征。以下哪种特征提取方法在医学影像分析中可能具有较高的应用价值?()A.基于形状的特征提取B.基于纹理的特征提取C.基于深度学习的自动特征学习D.基于颜色的特征提取13、计算机视觉中的图像去噪旨在去除图像中的噪声,同时保留图像的细节和结构。假设我们有一张受到严重噪声污染的医学图像,以下哪种图像去噪方法能够在去除噪声的同时,最大程度地保留图像的边缘和纹理信息?()A.均值滤波B.中值滤波C.高斯滤波D.基于小波变换的去噪方法14、计算机视觉中的纹理分析用于描述图像中重复出现的模式和结构。假设要对一块布料的纹理进行分析,以判断其材质和质量,同时布料可能存在褶皱和变形。以下哪种纹理分析方法在处理这种复杂情况时更为准确?()A.统计纹理分析B.结构纹理分析C.基于模型的纹理分析D.基于深度学习的纹理分析15、当进行视频中的动作识别时,假设要分析一段运动员训练的视频,识别出其中的各种动作,如跑步、跳跃和举重等。视频中的动作可能存在速度变化、遮挡和视角变化等问题。为了准确识别这些动作,以下哪种技术是关键的?()A.对每一帧图像进行独立的动作分类,然后综合结果B.利用光流信息来捕捉视频中的运动模式C.只关注视频中的关键帧,忽略其他帧D.不考虑视频的时序信息,将其视为一系列独立的图像16、图像分类是计算机视觉的常见任务之一。假设要对大量的自然风景图片进行分类,如山脉、森林、海滩等。在进行图像分类时,以下关于数据增强的方法,哪一项可能不太有效?()A.对图像进行随机裁剪和旋转,增加数据的多样性B.改变图像的色彩和对比度,模拟不同的拍摄条件C.直接复制原图像,增加数据量D.给图像添加随机噪声,增强模型的鲁棒性17、在计算机视觉的三维重建任务中,需要从多视角的图像中恢复物体的三维形状。假设我们有一组从不同角度拍摄的建筑物图像,以下哪种方法常用于从这些图像中重建建筑物的三维模型?()A.立体匹配方法B.结构光方法C.运动恢复结构(SFM)D.基于投影的方法18、对于图像的纹理分析任务,假设要描述和区分不同类型的纹理,例如木纹和石纹。以下哪种方法可能更有助于准确分析纹理特征?()A.基于统计的方法,计算纹理的灰度共生矩阵B.基于模型的方法,如马尔可夫随机场C.仅通过肉眼观察和主观描述纹理D.不进行任何纹理分析,直接忽略纹理信息19、计算机视觉在自动驾驶领域有着至关重要的应用。假设一辆自动驾驶汽车正在道路上行驶,需要识别各种交通标志和障碍物。以下关于自动驾驶中计算机视觉任务的描述,正确的是:()A.只需对前方物体进行简单的图像分类,就能实现安全的自动驾驶B.准确的目标检测和语义分割对于理解复杂的道路场景至关重要C.计算机视觉在自动驾驶中作用不大,主要依靠其他传感器如雷达D.对于交通标志的识别,颜色信息比形状和图案信息更重要20、计算机视觉在工业检测中的应用越来越广泛。假设要检测电子电路板上的微小缺陷,以下哪种图像采集设备可能提供更高的分辨率和精度?()A.普通数码相机B.工业线阵相机C.手机摄像头D.监控摄像头21、在计算机视觉的车牌识别任务中,假设要从不同角度和光照条件下拍摄的车辆图像中准确识别出车牌号码。以下哪种技术可能有助于提高识别准确率?()A.字符分割和单独识别B.利用深度学习模型进行端到端的识别C.只关注车牌的颜色特征D.随机猜测车牌号码22、在计算机视觉的图像检索任务中,假设要从海量的图像库中快速找到与给定图像相似的图像。以下关于图像特征表示的选择,哪一项是需要重点考虑的?()A.选择具有高维度的特征向量,包含丰富的图像信息B.采用低维度但具有区分性的特征表示,提高检索效率C.忽略特征的维度和区分性,随机选择一种特征表示D.只使用图像的颜色特征,忽略形状和纹理等特征23、在计算机视觉的目标识别任务中,假设目标物体被部分遮挡,以下哪种模型架构可能更有助于恢复被遮挡部分的信息?()A.多层感知机(MLP)B.卷积神经网络(CNN)C.循环神经网络(RNN)D.注意力机制(AttentionMechanism)24、计算机视觉在无人驾驶中的应用需要应对各种复杂的环境和情况。假设无人驾驶汽车要在恶劣天气下行驶,以下关于计算机视觉在无人驾驶中的挑战的描述,哪一项是不正确的?()A.恶劣天气会影响图像的质量和清晰度,增加目标检测和识别的难度B.计算机视觉系统需要与其他传感器(如雷达和超声波传感器)融合,以提高在恶劣天气下的感知能力C.深度学习模型在恶劣天气条件下的性能会显著下降,无法正常工作D.针对恶劣天气,可以通过数据增强和模型优化等方法提高计算机视觉系统的鲁棒性25、在计算机视觉的行人重识别任务中,需要在不同摄像头拍摄的图像中识别出同一个行人。假设我们要在一个大型商场的监控系统中实现行人重识别,以下哪种特征和模型能够提高识别的准确率和跨摄像头的泛化能力?()A.基于颜色和纹理的特征B.基于深度学习的全局特征和度量学习C.基于形状和轮廓的特征D.基于步态和姿势的特征26、计算机视觉中的行人检测是智能监控系统中的重要任务。假设要在一个拥挤的公共场所中准确检测出行人,同时要排除其他类似物体的干扰。以下哪种行人检测方法在这种复杂环境下具有更高的检测率和较低的误检率?()A.基于HOG特征的行人检测B.基于深度学习的行人检测C.基于运动信息的行人检测D.基于形状模板的行人检测27、在计算机视觉的姿态估计任务中,需要确定物体在三维空间中的方向和位置。假设我们要估计一个机器人手臂的姿态,以下哪种技术通常被用于获取准确的姿态信息?()A.基于视觉标记的姿态估计B.基于深度学习的姿态估计C.基于几何约束的姿态估计D.基于惯性测量单元(IMU)的姿态估计28、在计算机视觉的姿态估计任务中,例如估计人体关节的位置和姿态,以下哪种方法可能在精度和实时性之间取得较好的平衡?()A.基于模型的方法B.基于深度学习的回归方法C.基于深度学习的分类方法D.以上都不是29、计算机视觉中的全景图像拼接是将多个视角的图像组合成一个全景图像。假设我们有一组用普通相机拍摄的场景照片,要拼接成一个无缝的全景图,以下哪个步骤对于拼接的质量影响最大?()A.特征点提取和匹配B.图像融合和过渡处理C.相机参数估计和校正D.图像的裁剪和缩放30、计算机视觉在人脸识别领域取得了显著进展。假设要开发一个人脸识别系统,以下关于人脸识别技术的描述,哪一项是不正确的?()A.可以通过提取人脸的几何特征、纹理特征或深度学习特征进行识别B.人脸识别系统通常需要进行活体检测,以防止使用照片或视频等欺诈手段C.大规模的人脸数据集和深度学习模型的结合,大大提高了人脸识别的准确率D.人脸识别技术在任何光照条件、姿态变化和表情变化下都能准确识别,不受这些因素的影响二、应用题(本大题共5个小题,共25分)1、(本题5分)开发一个基于计算机视觉的手写数字识别系统。2、(本题5分)利用深度学习算法,对不同种类的果脯图像进行分类。3、(本题5分)利用图像分割技术,从心电图中分割出异常波形。4、(本题5分)通过计算机视觉,对不同类型的糖画作品进行分类。5、(本题5分)利用深度学习算法,对不同种类的坚果图像进行分类。三、简答题(本大题共5个小题,共25分)1、(本题5分)解释计算机视觉在药物研发中的作用。2、(本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论