版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页/共1页2024北京通州初二(上)期末数学2024年1月考生须知1.本试卷共6页,共三道大题,28个小题,满分为100分,考试时间为120分钟.2.请在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,请将答题卡交回.一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1.要使二次根式有意义,x的值可以是()A.3 B.1 C.0 D.-12.下列等式正确的是()A. B. C. D.3.下列手机屏幕手势解锁图案中,是轴对称图形的是()A. B. C. D.4.分式方程的两边同时乘以,约去分母,得到的整式方程正确的是()A. B. C. D.5.如图所示,实数,,在数轴上对应的点分别是,,,如果,那么下列结论正确的是()A. B. C. D.6.如图,在中,,如果要用尺规作图的方法在上确定一点,使,那么符合要求的作图痕迹是()A.B.C. D.7.如图,在中,,以的三边为边向外作三个正方形,如果正方形和正方形的面积分别为和,那么正方形的面积是()A. B. C. D.8.根据下列条件:①,,;②,,;③,,;④,,,其中不能唯一确定的形状和大小的是()A. B. C. D.二、填空题(本题共8个小题,每小题2分,共16分)9.如果分式的值为,那么的值为_____.10.六张卡片的正面分别写有,,,0,,这六个数,将卡片的正面朝下(反面完全相同)放在桌子上,从中任意抽取一张,卡片上的数字为无理数的可能性大小是________.11.如图,,要根据“”证明,应添加的直接条件是________.12.化简:的计算结果是______.13.如图,在中,,平分交于点,如果,那么点到边的距离为________.14.一个数的两个平方根分别是与,则___________.15.如图,把两个面积都为的小正方形分别沿对角线(虚线)剪开,将所得的个直角三角形拼成一个大正方形(如图),那么该大正方形的边长为_____.16.如图,在四边形中,,点关于的对称点恰好落在上,如果,那么的度数为_____(用含的代数式表示).三、解答题(本题共68分,第17-24题每小题5分,第25、26题每小题6分,第27题7分、第28题9分)解答应写出文字说明、演算步骤或证明过程.17.计算:18.计算:.19.计算:.20.如图,在的网格中,线段的端点都在格点(网格中横线与竖线的交点)上.(1)在图中作线段(线段的端点都在格点上),使得,垂足为;(2)在()的条件下,猜想线段、之间的数量关系,并说明理由(根据需要可以自己标注字母).21.我们研究了三角形有关边、角和主要线段的性质后,小龙同学给添加一个条件:如图,,小龙同学通过观察、猜想、动手测量,发现始终有,但不能说明道理,请你帮助说明其中的理由.22.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分不能全部写出来,但是根据的整数部分是1,将这个数减去其整数部分,差就是小数部分,所以它的小数部分可以写成.请解答下面题目.(1)的整数部分是________;(2)如果的整数部分是,的小数部分是,求的值;(3)如果,其中是整数,且,求的值.23.如图,在中,,,,是的边上的高,为垂足,且,.(1)试判断的形状,并说明理由;(2)求的长.24.如图,在中,,点在上,连接,并延长至点,连接,使.(1)作的平分线,交于点(用尺规作图,保留作图痕迹,不写作法);(2)在()的条件下,连接,求证:.25.列方程解应用题:《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到800里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少2天,已知快马的速度是慢马的速度的倍,求规定时间.26.如图,是等边三角形,点在边上,以为边作等边,点、点在直线两侧,连接.求证:.27.已知,,证明:.28.如图,在中,,,点在线段上,连接,点在的延长线上且.(1)求证:;(2)点关于直线的对称点为,连接、、,用等式表示线段、、之间的数量关系,并说明理由.
参考答案一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1.【答案】A【分析】根据二次根式有意义的条件即可求出答案.【详解】解:由题意可知:,
∴,∴符合要求的为A,
故选:A.【点睛】本题考查二次根式,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.【答案】B【分析】本题主要考查二次根式的计算,熟练掌握运算法则是解题的关键.根据运算法则进行计算即可.【详解】解:,故选项A错误;,故选项B错误;,故选项C错误;,故选项D错误.故选:B.3.【答案】D【分析】此题考查了轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键,根据概念作答即可.【详解】、不是轴对称图形,故本选项不符合题意;、不是轴对称图形,故本选项不符合题意;、不是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项符合题意;故选:.4.【答案】C【分析】本题主要考查分式方程去分母,熟练掌握解分式方程是解题的关键.根据解分式方程的方法即可得到答案.【详解】解:两边同时乘以,得,故选C.5.【答案】B【分析】本题主要考查数轴与实数对应关系,绝对值,有理数的加减法,乘除法知识,熟练掌握运算法则是解题的关键.根据图中的点的位置即可确定的正负,即可判断.【详解】解:由数轴可知,,,,,,故选项A错误;,故选项B正确;,故选项C错误;,故选项D错误故选:B.6.【答案】D【分析】本题考查了线段垂直平分线定理的逆定理以及尺规作图——作线段的垂直平分线.由和可得,点D在线段的垂直平分线上,因此这道题就转化成了作线段的垂直平分线,与的交点即为点D.【详解】∵,而,∴,∴点D在线段的垂直平分线上,即点D为线段的垂直平分线与的交点.观察四个选项,D选项符合题意,故选:D.7.【答案】A【分析】本题考查了勾股定理的应用,利用勾股定理直接求解即可,掌握勾股定理是解题的关键.【详解】解:∵正方形和正方形的面积分别为和,∴,,∵,∴,∴正方形的面积为,故选:.8.【答案】C【分析】本题考查了全等三角形的判定,根据全等三角形的判定方法逐项进行判断即可求解,掌握全等三角形的判定方法是解题的关键.【详解】解:已知三角形的三边确定时,由可知是唯一确定的,故该选项不符合题意;已知三角形的两边及其夹角确定时,由可知是唯一确定的,故该选项不符合题意;已知三角形的两边及一边的对角确定时,可知此时这个三角形是不确定的,故该选项符合题意;已知直角三角形的斜边和一条直角边确定时,由可知是唯一确定的,故该选项不符合题意;故选:.二、填空题(本题共8个小题,每小题2分,共16分)9.【答案】【分析】本题考查了分式的值为零的条件,根据分式的值为零的条件:分子的值为零,分母得值不为零,即可求解,掌握分式的值为零的条件是解题的关键.【详解】解:∵分式的值为,∴,且,解得,故答案为:.10.【答案】【分析】本题主要考查概率公式求概率,以及无理数,熟练掌握概率公式求概率是解题的关键.找出卡片中的无理数,根据概率公式求值即可.【详解】解:,是无理数,故从中任意抽取一张,卡片上的数字为无理数的可能性大小是,故答案为:.11.【答案】【分析】本题主要考查全等三角形的判定,熟练掌握全等三角形的判定是解题的关键.根据“”所需要的条件即可得到答案.【详解】解:和有一条公共直角边,根据“”证明,应添加的直接条件是.故答案为:.12.【答案】【分析】先通分,再进行化简即可.【详解】解:原式;故答案为:.【点睛】本题考查异分母分式的加减法.熟练掌握异分母加减法的运算法则,是解题的关键.13.【答案】4【分析】本题考查了角平分线上的点到角的两边距离相等的性质,过点D作交于点E,根据角平分线上的点到角的两边距离相等可得.【详解】解:如图,过点D作交于点E,,,,平分,,点到边的距离为4,故答案为:4.14.【答案】4【分析】根据平方根的性质建立等量关系,求出a的值.【详解】解:由题意得:,解得:,故答案为:4【点睛】本题主要考查了平方根的性质,其中解题关键是利用正数的两个平方根互为相反数的性质求解.15.【答案】【分析】本题考查了算术平方根,由题意得到大正方形的面积为,再根据正方形的面积计算方法,求出正方形面积的算术平方根即可求解,掌握算术平方根的定义是解题的关键.【详解】解:由题意可得,大正方形的面积为,∴该大正方形的边长为,故答案为:.16.【答案】【分析】本题考查了线段垂直平分线的性质,等腰三角形的性质,直角三角形的性质,连接,,过作于,由,,即可得出,再根据直角三角形两个锐角互余可求得,又由垂直平分,即可得到,正确作出辅助线是解题的关键.【详解】解:如图,连接,,过作于,∵点关于的对称点恰好落在上,∴垂直平分,∴,∴,∵,∴,又∵,∴,∴,∵,∴,∴在中,,∵垂直平分,∴,∴,故答案为:.三、解答题(本题共68分,第17-24题每小题5分,第25、26题每小题6分,第27题7分、第28题9分)解答应写出文字说明、演算步骤或证明过程.17.【答案】【分析】本题考查实数的混合运算,分别计算绝对值、立方根和二次根式,再进行加减计算即可.【详解】解:18.【答案】【分析】本题主要考查二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.根据二次根式的运算法则进行计算即可.【详解】解:原式.19.【答案】【分析】本题考查了分式的混合运算.先把分子分母因式分解,再把除法运算化为乘法运算,然后约分后进行通分进行分式的减法运算.【详解】解:.20.【答案】(1)作图见解析;(2),理由见解析.【分析】本题考查了网格作图,全等三角形的判定和性质,(1)构造全等三角形解决问题即可;(2)利用“”证明,即可得到;掌握全等三角形的判定和性质是解题的关键.【小问1详解】解:如图,线段即为所求.理由:由图可得,,∴,∵,∴,即,∴,∴;【小问2详解】解:.理由:在和中,,∴,∴.21.【答案】证明见解析【分析】本题考查了全等三角形的判定和性质,过点作于点,根据“”可证明,即可得到,掌握全等三角形的判定和性质是解题的关键.【详解】证明:如图,过点作于点,∵,∴,在和中,∵,∴,∴.22.【答案】(1)(2)(3)【分析】本题考查二次根式的加减运算,估算无理数的整数部分和小数部分.(1)估算的整数部分即可;(2)求出a,b的值,再代入计算即可;(3)求出x,y的值,再代入计算.【小问1详解】解:∵,即,的整数部分是2,故答案为:2;【小问2详解】∵,即,的整数部分是3,小数部分为,,,;的值为;【小问3详解】解:∵,即,,是整数,且,,∴,,.23.【答案】(1)是直角三角形;(2).【分析】本题考查勾股定理,勾股定理逆定理的应用.(1)根据勾股定理先求出,再利用勾股定理的逆定理判断即可;(2)由是的边上的高,利用面积法计算即可.【小问1详解】解:∵在中,,,,根据勾股定理,∵,∴是直角三角形;【小问2详解】解:∵是的边上的高,∴,∴.24.【答案】(1)作图见解析;(2)证明见解析.【分析】()根据角平分线的作法作出即可;()由,,得到,根据角平分线的定义可得,再利用“边角边”证明和全等,根据全等三角形对应角相等可得;本题考查了全等三角形的判定与性质,等腰三角形的性质,作角平分线的作法,确定出全等三角形的条件是解题的关键.【小问1详解】解:如图,即为所求;【小问2详解】证明:连接,∵,,∴,∵是的平分线,∴,在和中,∵,∴,∴,∵,∴,∴.25.【答案】天【分析】本题主要考查分式方程的实际应用,找出等量关系是解题的关键.根据题意列出方程解方程即可.【详解】解:设规定时间为天,根据题意得:,即两边同时乘以得解得,经检验,是原分式方程的解.答:规定时间为天.26.【答案】见解析【分析】本题主要考查全等三角形的判定和性质以及平行线的判定和等边三角形的性质,利用数形结合的思想解答是解题的关键.根据等边三角形的性质证明,再由全等三角形的性质证明,即可证明结论.【详解】证明:是等边三角形,等边,,,,,在和中,,,,,,,,.27.【答案】见解析【分析】根据作差法比较大小,然后根据分式的加减进行计算得出即可得证.【详解】证明:∵,又,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《慢性乙型肝炎患者肝血管病变免疫学机制初步研究》
- 《参泽舒肝胶囊对非酒精性脂肪性肝炎患者肝脏B超影响研究》
- 《AT公司债务重组盈余管理案例研究》
- 体育场馆亮化工程合同
- 房屋租赁合同纠纷上诉状范文
- 2025年学校消防应急演练计划
- 酒店管理投资合作协议书
- xx小学2022年防溺水知识竞赛方案
- 古诗里的中国风故事读后感
- 特殊教育机构课程选择方案
- 海阔天空音乐
- 激发自身无限潜能唤醒心中的巨人课件
- 生命的重建完整版本
- 供水公司招聘考试题库及答案
- 呼吸衰竭的护理查房护理查房通用
- 输电运维施工安全管控
- 《开关电源基础知识》课件
- 《人身财产安全》课件
- 政府部门的协调配合措施
- 托福考试报名流程完整详解
- 提升学生深度阅读教学设计
评论
0/150
提交评论