北师版九年级数学上册期末复习考题猜想 专题04 图形的相似(考题猜想易错必刷50题10种题型专项训练)_第1页
北师版九年级数学上册期末复习考题猜想 专题04 图形的相似(考题猜想易错必刷50题10种题型专项训练)_第2页
北师版九年级数学上册期末复习考题猜想 专题04 图形的相似(考题猜想易错必刷50题10种题型专项训练)_第3页
北师版九年级数学上册期末复习考题猜想 专题04 图形的相似(考题猜想易错必刷50题10种题型专项训练)_第4页
北师版九年级数学上册期末复习考题猜想 专题04 图形的相似(考题猜想易错必刷50题10种题型专项训练)_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一.比例的性质(共3小题)1.已知,则的值为()A.2 B.3 C.4 D.52.如果x:y=2:3,则下列各式不成立的是()A. B. C. D.3.已知,则a:b=.二.比例线段(共2小题)4.已知线段a=4cm,b=9cm,则线段a,b的比例中项为cm.5.已知:线段a、b、c,且==.(1)求的值.(2)如线段a、b、c满足a+b+c=27,求a﹣b+c的值..平行线分线段成比例(共8小题)6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A. B.2 C. D.8.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若=,DE=4,则EF的长是()A. B. C.6 D.109.如图,点A,E,F,C在同一条直线上,AD∥BC,BE的延长线交AD于点G,且BG∥DF,则下列结论错误的是()A. B. C. D.10.如图l1∥l2∥l3,若=,DF=10,则DE=()A.4 B.6 C.8 D.911.如图,点D、E分别在△ABC的边AB,AC上,DE∥BC,点G在边BC上,AG交DE于点H,点O是线段AG的中点,若AD:DB=3:1,则AO:OH=.12.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC=cm.13.如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,已知EF:DF=5:8,AC=24.(1)求AB的长;(2)当AD=4,BE=1时,求CF的长.四.相似多边形的性质(共1小题)14.如图,四边形ABCD是一张矩形纸片.将其按如图所示的方式折叠:使DA边落在DC边上,点A落在点H处,折痕为DE;使CB边落在CD边上,点B落在点G处,折痕为CF.若矩形HEFG与原矩形ABCD相似,AD=1,则CD的长为()A.﹣1 B.﹣1 C.+1 D.+1五.相似三角形的性质(共2小题)15.如图,在△ABC中,AB=9,BC=18,AC=12,点D在边AC上,且CD=4,过点D作一条直线交边AB于点E,使△ADE与△ABC相似,则DE的长是()A.12 B.16 C.12或16 D.以上都不对16.如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6),点C是线段AB的中点.点P在x轴上,若以P、A、C为顶点的三角形与△AOB相似,则P点坐标为.六.相似三角形的判定(共6小题)17.如图,在四边形ABCD中,AD∥BC,AD<BC,∠ABC=90°,且AB=3,点E是边AB上的动点,当△ADE、△BCE、△CDE两两相似时,则AE=()A. B. C.或 D.或118.如图,已知∠1=∠2,若再增加一个条件不一定能使结论△ADE∽△ABC成立,则这个条件是()A.∠D=∠B B. C. D.∠AED=∠C19.如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?20.如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE;(1)求证:△ABE∽△ECD;(2)若AB=4,AE=BC=5,求CD的长;(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.21.如图,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.22.如图,在矩形ABCD中,AB=3cm,BC=6cm,动点M以1cm/s的速度从A点出发,沿AB向点B运动,同时动点N以2cm/s的速度从点D出发,沿DA向点A运动,设运动的时间为t秒(0<t<3).(1)当t为何值时,△AMN的面积等于矩形ABCD面积的?(2)是否存在某一时刻t,使得以A、M、N为顶点的三角形与△ACD相似?若存在,求出t的值;若不存在,请说明理由.七.相似三角形的判定与性质(共20小题)23.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15 B.20 C.25 D.3024.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3 B.2:5 C.4:9 D.:25.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.526.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为()A.2 B. C.3 D.27.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2010个正方形的面积为()A. B. C. D.28.如图,在平行四边形ABCD中,EF∥AB,DE:AE=2:3,△BDC的面积为25,则四边形AEFB的面积为()A.25 B.9 C.21 D.1629.如图,在△ABC中,EF∥BC,=,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1330.如图,在△ABC中,AD是BC边上的高,在△ABC的内部,作一个正方形PQRS,若BC=3,AD=2,则正方形PQRS的边长为()A. B. C.1 D.31.如图,有公共顶点的正方形ABCD和正方形BFGE如图摆放,其中点G恰在CD边的四等分点(CG<DG),连结BD.则DH:BH为()A.2:3 B.:2 C.2: D.15:1732.已知,▱ABCD面积为40,点M为AD的三等分点,且AM=AD,N为BC的中点,MN交对角线BD于点O,则阴影部分的面积为.33.如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE=∠ACB.(1)求证:△ADE∽△ACB;(2)若AD=2DB,AE=4,AC=9,求BD的长.34.如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示);(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.35.如图,△ABC中∠A=55°,∠B=45°,点D、E分别在△ABC的边AB、AC上,且∠ADE=80°.(1)求证:△AED∽△ABC.(2)如果AD=4,BD=6,AE=5,求CE的长.36.如图,在四边形ABCD中,对角线AC与BD交于点E,DB平分∠ADC,且AB2=BE•BD.(1)求证:△ABE∽△DCE;(2)AE•CD=BC•ED.37.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°.(1)求证:△ABD∽△DCE;(2)若BD=4,CE=3,求△ABC的面积.38.如图1,在△ABC中,点E在AC的延长线上,且∠E=∠ABC.(1)求证:AB2=AC•AE;(2)如图2,D在BC上且BD=3CD,延长AD交BE于F,若=,求的值.39.如图,在矩形ABCD中,AB=3,BC=5,BE平分∠ABC交AD于点E.连接CE,点F是BE上一动点,过点F作FG∥CE交BC于点G.将△BFG绕点B旋转得到△BF'G'.(1)连接CG',EF',求证:△BEF'∽△BCG';(2)当点G'恰好落在直线AE上时,若BF=3,求EG'的值.40.如图,在正方形ABCD中,E是BC的中点,F是边CD上的点,CD=4CF,连接EF并延长交AD的延长线于点G.(1)求证:△ABE∽△ECF(2)若正方形ABCD的边长为8,求AG的长.41.如图,在正方形ABCD中,点B关于CD的对称点为E,F为AD边上一动点,连接CF、EF、EF交CD于G、连接BG,交CF于H.(1)如图1,当点H为CF中点,点P为GE的中点时,连接CP,求证:EG=2FG;(2)如图2,若DF2=DG•DC.①求证:CF=BG;②若AB=2,求AF的长.42.问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.八.相似三角形的应用(共3小题)43.四分仪是一种十分古老的测量仪器.其出现可追溯到数学家托勒密的《天文学大成》.图1是古代测量员用四分仪测量一方井的深度,将四分仪置于方井上的边沿,通过窥衡杆测望井底点F、窥衡杆与四分仪的一边BC交于点H.图2中,四分仪为正方形ABCD.方井为矩形BEFG.若测量员从四分仪中读得AB为1,BH为0.5,实地测得BE为2.5.则井深BG为()A.4 B.5 C.6 D.744.据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A、B的对应点分别是C、D).若物体AB的高为9cm,小孔O到物体和实像的水平距离BE、CE分别为12cm、9cm,则实像CD的高度为()cm.A.6cm B.6.25cm C.6.75cm D.7cm45.如图,利用标杆DA测量楼高,点C,A,B在同一直线上,DA⊥CB,EB⊥CB,垂足分别为A,B.若测得AB=16米,DA=3米,CA=4米,则楼高EB为()A.10米 B.12米 C.15米 D.20米九.位似变换(共4小题)46.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A.(5,1) B.(4,3) C.(3,4) D.(1,5)47.如图,在平面直角坐标系中,已知点E(﹣4,2),F(﹣1,﹣1).以原点O为位似中心,把△EFO扩大到原来的2倍,则点E的对应点E'的坐标为()A.(﹣8,4) B.(8,﹣4) C.(8,4)或(﹣8,﹣4) D.(﹣8,4)或(8,﹣4)48.如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1) B.(8,﹣4) C.(2,﹣1)或(﹣2,1) D.(8,﹣4)或(﹣8,﹣4)49.如图,直线y=x+1与x轴,y轴分别交于A、B两点,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:2,则点B′的坐标为.一十.作图-位似变换(共1小题)50.已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2:1,并直接写出C2点的坐标及△A2BC2的面积.

专题04图形的相似(易错必刷50题10种题型专项训练)比例的性质相似三角形的判定比例线段相似三角形的判定与性质平行线分线段成比例相似三角形的应用相似多边形的性质位似变换相似三角形的性质作图-位似变换一.比例的性质(共3小题)1.已知,则的值为()A.2 B.3 C.4 D.5【答案】A【解答】解:设=k(k≠0),则a=2k,b=3k,c=4k,∴==2,故选:A.2.如果x:y=2:3,则下列各式不成立的是()A. B. C. D.【答案】D【解答】解:可设x=2k,y=3k.通过代入计算,进行约分,A,B,C都正确;D不能实现约分,故错误.故选:D.3.已知,则a:b=19:13.【答案】见试题解答内容【解答】解:∵∴5(a+2b)=9(2a﹣b)∴5a+10b=18a﹣9b∴19b=13a∴a:b=.二.比例线段(共2小题)4.已知线段a=4cm,b=9cm,则线段a,b的比例中项为6cm.【答案】见试题解答内容【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=4×9,x=±6,(线段是正数,负值舍去),故填6.5.已知:线段a、b、c,且==.(1)求的值.(2)如线段a、b、c满足a+b+c=27,求a﹣b+c的值.【答案】见试题解答内容【解答】解:(1)∵=,∴=,∴=+1=+1=;(2)设===k,则a=2k,b=3k,c=4k,∵a+b+c=27,∴2k+3k+4k=27,∴k=3,∴a=6,b=9,c=12,∴a﹣b+c=6﹣9+12=9.三.平行线分线段成比例(共8小题)6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【答案】B【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A. B.2 C. D.【答案】D【解答】解:∵AG=2,GB=1,∴AB=AG+BG=3,∵直线l1∥l2∥l3,∴=,故选:D.8.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若=,DE=4,则EF的长是()A. B. C.6 D.10【答案】C【解答】解:∵l1∥l2∥l3,∴,即,解得:EF=6.故选:C.9.如图,点A,E,F,C在同一条直线上,AD∥BC,BE的延长线交AD于点G,且BG∥DF,则下列结论错误的是()A. B. C. D.【答案】C【解答】解:∵BG∥DF,∴=,A正确,C错误;∴=,B正确;∵AD∥BC,∴∠A=∠C,∵BG∥DF,∴∠BEC=∠DFA,∴△BEC∽△DFA,∴=,D正确,故选:C.10.如图l1∥l2∥l3,若=,DF=10,则DE=()A.4 B.6 C.8 D.9【答案】B【解答】解:l1∥l2∥l3,∴==,又∵DF=10,∴DE=DF=6,故选:B.11.如图,点D、E分别在△ABC的边AB,AC上,DE∥BC,点G在边BC上,AG交DE于点H,点O是线段AG的中点,若AD:DB=3:1,则AO:OH=2:1.【答案】2:1.【解答】解:∵点O是线段AG的中点,∴OA=OG=AG,∵DE∥BC,AD:DB=3:1,∴===,==,∴OH=OG﹣HG=AG﹣AG=AG,∴AO:OH=(AG):(AG)=2:1,故答案为:2:1.12.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC=12cm.【答案】见试题解答内容【解答】解:如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴,即,∴BC=12cm.故答案为:12.13.如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,已知EF:DF=5:8,AC=24.(1)求AB的长;(2)当AD=4,BE=1时,求CF的长.【答案】见试题解答内容【解答】(1)解:∵l1∥l2∥l3,EF:DF=5:8,AC=24,∴==,∴=,∴BC=15,∴AB=AC﹣BC=24﹣15=9.(2)解:∵l1∥l2∥l3∴==,∴=,∴OB=3,∴OC=BC﹣OB=15﹣3=12,∴==,∴=,∴CF=4.四.相似多边形的性质(共1小题)14.如图,四边形ABCD是一张矩形纸片.将其按如图所示的方式折叠:使DA边落在DC边上,点A落在点H处,折痕为DE;使CB边落在CD边上,点B落在点G处,折痕为CF.若矩形HEFG与原矩形ABCD相似,AD=1,则CD的长为()A.﹣1 B.﹣1 C.+1 D.+1【答案】C【解答】解:设HG=x,∵四边形ABCD是矩形,∴∠A=∠ADH=90°,AD=BC=1,由折叠得:∠A=∠AHE=90°,AD=DH=1,BC=CG=1,∴四边形ADHE是矩形,∵AD=DH,∴四边形ADHE是正方形,∴AD=HE=1,∵矩形HEFG与原矩形ABCD相似,∴=,∴=,解得:x=﹣1或x=﹣﹣1,经检验:x=﹣1或x=﹣﹣1都是原方程的根,∵GH>0,∴GH=﹣1,∴DC=2+x=+1,故选:C.五.相似三角形的性质(共2小题)15.如图,在△ABC中,AB=9,BC=18,AC=12,点D在边AC上,且CD=4,过点D作一条直线交边AB于点E,使△ADE与△ABC相似,则DE的长是()A.12 B.16 C.12或16 D.以上都不对【答案】A【解答】解:∵∠A=∠A,分为两种情况:①DE∥BC(即∠ADE=∠C),∵DE∥BC,∴△ADE∽△ACB,∴=,∴,∴DE=12,②∠ADE′=∠B,∵∠A=∠A,∴△ADE′∽△ABC,∴=,∴=,∴DE′=16,∵AB=9,∴此时点E在AB的延长线上,不符合题意,舍去,故选:A.16.如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6),点C是线段AB的中点.点P在x轴上,若以P、A、C为顶点的三角形与△AOB相似,则P点坐标为(4,0)或(,0).【答案】见试题解答内容【解答】解:∵A点坐标为(8,0),B点坐标为(0,6),点C是线段AB的中点,∴OA=8,OB=6,AC=AB,∴AB=10,∴AC=5,若△PAC∽△OAB,∵∠OAB=∠PAC,则需,∴PA=4,PC=3,∴OP=4,∴P点坐标为(4,0);若△PAC∽△BAO,∵∠OAB=∠PAC,则需,∴,解得:PA=,∴OP=8﹣=.∴P点坐标为(,0).故答案为:(4,0)或(,0).六.相似三角形的判定(共6小题)17.如图,在四边形ABCD中,AD∥BC,AD<BC,∠ABC=90°,且AB=3,点E是边AB上的动点,当△ADE、△BCE、△CDE两两相似时,则AE=()A. B. C.或 D.或1【答案】D【解答】解:分两种情况:①当∠CED=90°时,如图1,过E作EF⊥CD于F,∵AD∥BC,AD<BC,∴AB与CD不平行,∴当△ADE、△BCE、△CDE两两相似时,∴∠BEC=∠CDE=∠ADE,∵∠A=∠B=∠CED=90°,∴∠BCE=∠DCE,∴AE=EF,EF=BE,∴AE=BE=AB=;②当∠CDE=90°时,如图2,∵当△ADE、△BCE、△CDE两两相似时,∴∠CEB=∠CED=∠AED=60°,∴∠BCE=∠DCE=30°,∵∠A=∠B=90°,∴BE=ED=2AE,∵AB=3,∴AE=1,综上,AE的值为或1;故选:D.18.如图,已知∠1=∠2,若再增加一个条件不一定能使结论△ADE∽△ABC成立,则这个条件是()A.∠D=∠B B. C. D.∠AED=∠C【答案】C【解答】解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、∵∠DAE=∠BAC,∠D=∠B,∴△ADE∽△ABC,故本选项正确;B、∵=,∠DAE=∠BAC,∴△ADE∽△ABC,故本选项正确;C、∵=,两线段的夹角∠D和∠B不知道相等,∴不能说△ADE和△ABC相似,故本选项错误,即不正确;D、∵∠DAE=∠BAC,∠AED=∠C,∴△ADE∽△ABC,故本选项正确;故选:C.19.如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?【答案】见试题解答内容【解答】解:设经过t秒时,以△QBP与△ABC相似,则AP=2t厘米,BP=(8﹣2t)厘米,BQ=4t厘米,∵∠PBQ=∠ABC,∴当=时,△BPQ∽△BAC,即=,解得t=2(s);当=时,△BPQ∽△BCA,即=,解得t=0.8(s);即经过2秒或0.8秒时,△QBP与△ABC相似.20.如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE;(1)求证:△ABE∽△ECD;(2)若AB=4,AE=BC=5,求CD的长;(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.【答案】见试题解答内容【解答】(1)证明:∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°,∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠DEC=90°,∴∠DEC=∠BAE,∴△ABE∽△ECD;(2)解:Rt△ABE中,∵AB=4,AE=5,∴BE=3,∵BC=5,∴EC=5﹣3=2,由(1)得:△ABE∽△ECD,∴,∴,∴CD=;(3)解:线段AD、AB、CD之间数量关系:AD=AB+CD;理由是:过E作EF⊥AD于F,∵△AED∽△ECD,∴∠EAD=∠DEC,∵∠AED=∠C,∴∠ADE=∠EDC,∵DC⊥BC,∴EF=EC,∵DE=DE,∴Rt△DFE≌Rt△DCE(HL),∴DF=DC,同理可得:△ABE≌△AFE,∴AF=AB,∴AD=AF+DF=AB+CD.21.如图,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,=∵AB=AC=10,BC=16∴BG=8,∴AG=6.∵AD=BE=t,∴BD=10﹣t,∴=解得DF=(10﹣t)∵S△BDE=BE•DF=7.5∴(10﹣t)•t=15解得t=5.答:t为5秒时,△BDE的面积为7.5cm2.(2)存在.理由如下:①当BE=DE时,△BDE∽△BCA,∴=即=,解得t=,②当BD=DE时,△BDE∽△BAC,=即=,解得t=.答:存在时间t为或秒时,使得△BDE与△ABC相似.22.如图,在矩形ABCD中,AB=3cm,BC=6cm,动点M以1cm/s的速度从A点出发,沿AB向点B运动,同时动点N以2cm/s的速度从点D出发,沿DA向点A运动,设运动的时间为t秒(0<t<3).(1)当t为何值时,△AMN的面积等于矩形ABCD面积的?(2)是否存在某一时刻t,使得以A、M、N为顶点的三角形与△ACD相似?若存在,求出t的值;若不存在,请说明理由.【答案】(1)经过1秒或2秒时,△AMN的面积等于矩形ABCD面积的;(2)当运动时间为1.5秒或2.4秒时,以A、M、N为顶点的三角形与△ACD相似.【解答】解:(1)∵四边形ABCD是矩形,∴AD=BC=6cm,∠BAD=90°,AM=tcm,AN=6﹣2t(cm),∴S△AMN=AN•AM=×(6﹣2t)×t=﹣(t﹣)2+(0≤t≤3),依题意得:﹣(t﹣)2+=×3×6,t2﹣3t+2=0,t1=2,t2=1.答:经过1秒或2秒时,△AMN的面积等于矩形ABCD面积的;(2)设运动时间为t秒,由题意得DN=2t(cm),AN=(6﹣2t)(cm),AM=t(cm),若△NMA∽△ACD,则有AD:AN=CD:AM,即6:(6﹣2t)=3:t,解得t=1.5,若△MNA∽△ACD则有AD:AM=CD:AN,即6:t=3:(6﹣2t),解得t=2.4,答:当运动时间为1.5秒或2.4秒时,以A、M、N为顶点的三角形与△ACD相似.七.相似三角形的判定与性质(共20小题)23.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15 B.20 C.25 D.30【答案】B【解答】解:设正方形EFGH的边长EF=EH=x,∵四边形EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴=(相似三角形对应边上的高的比等于相似比),∵BC=120,AD=60,∴AN=60﹣x,∴=,解得:x=40,∴AN=60﹣x=60﹣40=20.故选:B.24.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3 B.2:5 C.4:9 D.:【答案】C【解答】解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD===,∵=()2=∴△ABC与△DCA的面积比为4:9.故选:C.25.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5【答案】A【解答】解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴AD=FD,∴△ADF是等腰三角形,同理△ABE是等腰三角形,AD=DF=9;∵AB=BE=6,∴CF=3;∴在△ABG中,BG⊥AE,AB=6,BG=,可得:AG=2,又BG⊥AE,∴AE=2AG=4,∴△ABE的周长等于16,又∵▱ABCD∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选:A.26.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为()A.2 B. C.3 D.【答案】A【解答】解:如图:连接BE,,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==2,∵∠APD=∠BPF,∴tan∠APD=2.故选:A.27.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2010个正方形的面积为()A. B. C. D.【答案】D【解答】解:设正方形的面积分别为S1,S2…S2010,根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(同位角相等).∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD=,cot∠DAO==,∵tan∠BAA1==cot∠DAO,∴BA1=AB=,∴CA1=+=×,同理,得:C1A2=××,由正方形的面积公式,得:S1=,S2=×,S3=××,由此,可得Sn=×(1+)2n﹣2,∴S2010=5×()2×2010﹣2,=5×()4018.故选:D.28.如图,在平行四边形ABCD中,EF∥AB,DE:AE=2:3,△BDC的面积为25,则四边形AEFB的面积为()A.25 B.9 C.21 D.16【答案】C【解答】解:因为EF∥AB,DE:AE=2:3,所以,所以S△DEF:S△ABD=4:25,又因为四边形ABCD是平行四边形,所以△ABD≌△BDC,△BDC的面积为25,所以△ABD的面积为25,所以△DEF的面积为4,则四边形AEFB的面积为21.故选:C.29.如图,在△ABC中,EF∥BC,=,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.13【答案】A【解答】解:∵=,∴==,∵EF∥BC,∴△AEF∽△ABC,∴==,∴9S△AEF=S△ABC,∵S四边形BCFE=8,∴9(S△ABC﹣8)=S△ABC,解得:S△ABC=9.故选:A.30.如图,在△ABC中,AD是BC边上的高,在△ABC的内部,作一个正方形PQRS,若BC=3,AD=2,则正方形PQRS的边长为()A. B. C.1 D.【答案】A【解答】解:如图:设正方形PQRS的边长为x,∵AD是△ABC的高,SR∥BC,∴AE是△ASR的高,则AE=AD﹣ED=2﹣x,∵四边形PQRS是正方形,∴SR∥BC,∴△ASR∽△ABC,∴=,∴=,解得:x=,∴正方形PQRS的边长为.故选:A.31.如图,有公共顶点的正方形ABCD和正方形BFGE如图摆放,其中点G恰在CD边的四等分点(CG<DG),连结BD.则DH:BH为()A.2:3 B.:2 C.2: D.15:17【答案】D【解答】解:连接BG,设GC=x,∵G恰在CD边的四等分点,∴DG=3x,DC=4x,∵四边形ABCD是正方形,∴∠BDG=45°,∠C=90°,BC=DC=4x,∴在Rt△BCD中根据勾股定理得,BD=4x,在Rt△BGC中根据勾股定理得,BG=x,∵四边形BFGE是正方形,∴∠BGH=45°,∴∠BGH=∠BDG,∴∠DBG=∠GBH,∴△BGH∽△BDG,∴=,∴=,∴BH=,∴DH=BD﹣BH=4x﹣=,∴==.故选:D.32.已知,▱ABCD面积为40,点M为AD的三等分点,且AM=AD,N为BC的中点,MN交对角线BD于点O,则阴影部分的面积为.【答案】见试题解答内容【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=CD,∵BD=BD,∴△ABD≌△CDB(SSS),∴△CDB的面积=▱ABCD的面积=20,∵N为BC的中点,∴BN=NC=BC,∴△DNC的面积=△BND的面积=△CBD的面积=10,∵AM=AD,∴DM=AD=BC,∵AD∥BC,∴∠ADB=∠DBC,∠DMN=∠ANB,∴△DMO∽△BNO,∴===,∴=,∴△DON的面积=△BND的面积=,∴阴影部分的面积=△DON的面积+△DNC的面积=,故答案为:.33.如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE=∠ACB.(1)求证:△ADE∽△ACB;(2)若AD=2DB,AE=4,AC=9,求BD的长.【答案】见试题解答内容【解答】(1)证明:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)解:由(1)可知:△ADE∽△ACB,∴=,设BD=x,则AD=2x,AB=3x,∵AE=4,AC=9,∴=,解得:x=(负值舍去),∴BD的长是.34.如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示);(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.【答案】见试题解答内容【解答】解:(1)存在点P.假设存在一点P,使点Q与点C重合,如图1所示,设AP的长为x,则BP=10﹣x,在Rt△APD中,DP2=AD2+AP2,即DP2=42+x2,在Rt△PBC中,PC2=BC2+PB2,即PC2=42+(10﹣x)2,在Rt△PCD中,CD2=DP2+PC2,即102=42+x2+42+(10﹣x)2,解得x=2或8,故当m=10时,存在点P使得点Q与点C重合,此时AP=2或8;(2)连接AC,设BP=y,则AP=m﹣y,∵PQ∥AC,∴△PBQ∽△ABC,∴=,即=①,∵DP⊥PQ,∴∠APD+∠BPQ=90°,∵∠APD+∠ADP=90°,∠BPQ+∠PQB=90°,∴∠APD=∠BQP,∴△APD∽△BQP,∴=,即=②,①②联立得,BQ=;(3)连接DQ,由已知PQ⊥PD,所以只有当DP=PQ时,△PQD为等腰三角形(如图),∴∠BPQ=∠ADP,又∠B=∠A=90°,∴△PBQ≌△DAP,∴PB=DA=4,AP=BQ=m﹣4,∴以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式为:S四边形PQCD=S矩形ABCD﹣S△DAP﹣S△QBP=4m﹣×4×(m﹣4)﹣×4×(m﹣4)=16(4≤m<8)当Q在BC延长线上时,S=m2﹣2m(m≥8).综上所述,S=.35.如图,△ABC中∠A=55°,∠B=45°,点D、E分别在△ABC的边AB、AC上,且∠ADE=80°.(1)求证:△AED∽△ABC.(2)如果AD=4,BD=6,AE=5,求CE的长.【答案】(1)证明过程见解答部分;(2)3.【解答】(1)证明:∵∠A=55°,∠B=45°,∴∠C=80°,∵∠A=∠A,∠ADE=∠C,∴△AED∽△ABC;(2)解:由(1)得△AED∽△ABC,∴,∵AD=4,BD=6,∴AB=10,∵AD=4,AB=10,AE=5∴AC=8.∴CE=AC﹣AE=8﹣5=3.36.如图,在四边形ABCD中,对角线AC与BD交于点E,DB平分∠ADC,且AB2=BE•BD.(1)求证:△ABE∽△DCE;(2)AE•CD=BC•ED.【答案】证明过程见解答部分.【解答】证明:(1)∵AB2=BE•BD,∴AB:BE=BD:AB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴∠BAC=∠BDC,∵BD平分∠ADC,∴∠ADB=∠BDC=∠BAC,∴△ABE∽△DCE;(2)由(1)中相似可得,AE:DE=BE:CE,∵∠BEC=∠AED,∴△ADE∽△BCE,∴∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,∴△BCD∽△AED,∴BC:AE=CD:ED,AE•CD=BC•ED.37.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°.(1)求证:△ABD∽△DCE;(2)若BD=4,CE=3,求△ABC的面积.【答案】见试题解答内容【解答】证明:如图所示:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=AC=BC,∴∠BAD+∠ADB=120°,又∵∠ADB+∠EDC=120°,∴∠BAD=∠EDC,∴△ABD∽△DCE;(2)过点A作AH⊥BC交BC于点H,∵△ABD∽△DCE,∴,∵BD=4,CE=3,∴设AB=4x,则DC=3x.又∵BD+DC=AC,∴4+3x=4x,解得:x=4,∴AB=AC=BC=16,在Rt△ABH中,由勾股定理得:==,∴==.38.如图1,在△ABC中,点E在AC的延长线上,且∠E=∠ABC.(1)求证:AB2=AC•AE;(2)如图2,D在BC上且BD=3CD,延长AD交BE于F,若=,求的值.【答案】(1)证明过程见解答;(2)的值为.【解答】(1)证明:∵∠E=∠ABC,∠A=∠A,∴△ABC∽△AEB,∴=,∴AB2=AC•AE;(2)解:过点E作EH∥CB,交AF的延长线于点H,∵△ABC∽△AEB,∴===,∴设AC=2a,AB=3a,∴=,∴AE=a,∴==,∵BD=3CD,∴设CD=m,则BD=3m,∴BC=CD+BD=4m,∴=,∴EB=6m,∵EH∥CD,∴∠ACD=∠AEH,∠ADC=∠AHE,∴△ACD∽△AEH,∴==,∴EH=m,∵EH∥BD,∴∠BDF=∠DHE,∠DBF=∠FEH,∴△BDF∽△EHF,∴===,∴EF=BE=m,∴==,∴的值为.39.如图,在矩形ABCD中,AB=3,BC=5,BE平分∠ABC交AD于点E.连接CE,点F是BE上一动点,过点F作FG∥CE交BC于点G.将△BFG绕点B旋转得到△BF'G'.(1)连接CG',EF',求证:△BEF'∽△BCG';(2)当点G'恰好落在直线AE上时,若BF=3,求EG'的值.【答案】(1)证明过程详见解答;(2)EG′=.【解答】(1)证明:∵FG∥CE,∴△BFG∽△BEC,∴=,∴=,∵∠F′BG′=∠EBC,∴∠FBG′+∠EBG′=∠EBC+∠EBG′,即∠F′BE=∠CBG,∴△BEF′∽△BCG′;(2)如图1,∵四边形ABCD是矩形,∴∠D=∠A=∠ABC=90°,∵BE平分∠ABC,∴∠ABE=∠ABC=45°,∴∠AEB=90°﹣∠ABE=45°,∴∠AEB=∠ABE,∴AE=AB=3,∴BE=3,由(1)知:=,∴=,∴BG=,∴BG′=BG=,在Rt△ABG′中,由勾股定理得,AG′===,∴EG′=AE﹣AG′=3﹣=,EG″=,综上所述:EG′=.40.如图,在正方形ABCD中,E是BC的中点,F是边CD上的点,CD=4CF,连接EF并延长交AD的延长线于点G.(1)求证:△ABE∽△ECF(2)若正方形ABCD的边长为8,求AG的长.【答案】(1)证明过程见上面详细过程;(2)AG=20.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠C=90°,∵E是BC的中点,∴CE=BE=,∴,∵CD=4CF,∴,∴即,∵∠B=∠C=90°,∴△ABE∽△ECF;(2)∵正方形ABCD的边长为8,∴BC=CD=AD=8,BC∥AD,∴∠CEF=∠G,∵∠CFE=∠DFG,∴△CEF∽△DGF,∴,∵E是BC的中点,CD=4CF,∴CF=2,DF=6,CE=4,∴,∴DG=12,∴AG=DG+AD=20.41.如图,在正方形ABCD中,点B关于CD的对称点为E,F为AD边上一动点,连接CF、EF、EF交CD于G、连接BG,交CF于H.(1)如图1,当点H为CF中点,点P为GE的中点时,连接CP,求证:EG=2FG;(2)如图2,若DF2=DG•DC.①求证:CF=BG;②若AB=2,求AF的长.【答案】(1)证明过程见解答;(2)①证明过程见解答;②.【解答】(1)证明:∵点P为GE的中点.∴EG=2PG,∵点B关于CD对称点为E,∴点C是BE的中点,∴CP是△BEG的中位线,∴CP∥BG,∴,∵H是CF的中点,∴FH=CH,∴FG=PG,∴EG=2FG;(2)①证明:∵四边形ABCD为正方形,∴∠BCG=∠D=90°,BC=CD,AD//BC,∵DF2=DG•DC,∴,∵∠FDG=∠CDF=90°,∴△CFD∽△FGD,∴∠FCD=∠GFD,∵AD//BC,∴∠GFD=∠E,∵CD垂直平分BE,∴BG=EG,∴∠GBC=∠E,∴∠FCD=∠GBC,∴△GBC≌△FCD(ASA),∴CF=BG;②解:∵四边形ABCD为正方形,∴AD=CD=AB=2,设AF=x,则DF=2﹣x,由①得:△GBC≌△FCD,∴CG=DF=2﹣x,∵AD=CD,∴AD﹣DF=CD﹣CG,∴DG=AF=x,∵DF2=DG•DC,∴(2﹣x)2=2x,即x2﹣6x+4=0,解得:(不合题意,舍去),∴.42.问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.【答案】见试题解答内容【解答】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE∥BC,∴,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,即,故答案为:;(2)解法一:∵AB=4,AD=m,∴BD=4﹣m,∵DE∥BC,∴==,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴===,即=;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,∴△ADF∽△ABH,∴=,∴===,即=;问题2:如图2,解法一:如图2,分别延长BA、CD交于点O,∵AD∥BC,∴△OAD∽△OBC,∴,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF∥BC,由问题1的解法可知:===,∵==,∴=,∴===,即=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=BC,∴=,∴S△ADC=,∴S△ADC=S,S△ABC=,由问题1的结论可知:=,∵MF∥AD,∴△CFM∽△CDA,∴===,∴S△CFM=×S,∴S△EFC=S△EMC+S△CFM=+×S=,∴=.八.相似三角形的应用(共3小题)43.四分仪是一种十分古老的测量仪器.其出现可追溯到数学家托勒密的《天文学大成》.图1是古代测量员用四分仪测量一方井的深度,将四分仪置于方井上的边沿,通过窥衡杆测望井底点F、窥衡杆与四分仪的一边BC交于点H.图2中,四分仪为正方形ABCD.方井为矩形BEFG.若测量员从四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论