版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宿州市十三所重点中学2025届高考考前模拟数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列中,若,则此数列中一定为0的是()A. B. C. D.2.已知数列的前n项和为,,且对于任意,满足,则()A. B. C. D.3.设函数的导函数,且满足,若在中,,则()A. B. C. D.4.若,,则的值为()A. B. C. D.5.若,则下列不等式不能成立的是()A. B. C. D.6.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.7.已知实数x,y满足,则的最小值等于()A. B. C. D.8.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.9.中,角的对边分别为,若,,,则的面积为()A. B. C. D.10.已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是()A. B. C. D.11.集合,,则()A. B. C. D.12.已知正项等比数列中,存在两项,使得,,则的最小值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设全集,集合,,则集合______.14.设全集,,,则______.15.已知函数,若恒成立,则的取值范围是___________.16.函数在处的切线方程是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)18.(12分)在平面直角坐标系中,将曲线(为参数)通过伸缩变换,得到曲线,设直线(为参数)与曲线相交于不同两点,.(1)若,求线段的中点的坐标;(2)设点,若,求直线的斜率.19.(12分)如图所示,在四棱锥中,底面为正方形,,,,,为的中点,为棱上的一点.(1)证明:面面;(2)当为中点时,求二面角余弦值.20.(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:AQI空气质量优良轻度污染中度污染重度污染重度污染天数61418272510(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.21.(12分)已知,其中.(1)当时,设函数,求函数的极值.(2)若函数在区间上递增,求的取值范围;(3)证明:.22.(10分)已知抛物线:()上横坐标为3的点与抛物线焦点的距离为4.(1)求p的值;(2)设()为抛物线上的动点,过P作圆的两条切线分别与y轴交于A、B两点.求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.2、D【解析】
利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可.【详解】当时,.所以数列从第2项起为等差数列,,所以,,.,,.故选:.【点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题.3、D【解析】
根据的结构形式,设,求导,则,在上是增函数,再根据在中,,得到,,利用余弦函数的单调性,得到,再利用的单调性求解.【详解】设,所以,因为当时,,即,所以,在上是增函数,在中,因为,所以,,因为,且,所以,即,所以,即故选:D【点睛】本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.4、A【解析】
取,得到,取,则,计算得到答案.【详解】取,得到;取,则.故.故选:.【点睛】本题考查了二项式定理的应用,取和是解题的关键.5、B【解析】
根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.6、D【解析】
由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.7、D【解析】
设,,去绝对值,根据余弦函数的性质即可求出.【详解】因为实数,满足,设,,,恒成立,,故则的最小值等于.故选:.【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.8、D【解析】
如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.9、A【解析】
先求出,由正弦定理求得,然后由面积公式计算.【详解】由题意,.由得,.故选:A.【点睛】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解.10、A【解析】双曲线﹣=1的渐近线方程为y=x,不妨设过点F1与双曲线的一条渐过线平行的直线方程为y=(x﹣c),与y=﹣x联立,可得交点M(,﹣),∵点M在以线段F1F1为直径的圆外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.则e=>1.∴双曲线离心率的取值范围是(1,+∞).故选:A.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.11、A【解析】
计算,再计算交集得到答案.【详解】,,故.故选:.【点睛】本题考查了交集运算,属于简单题.12、C【解析】
由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.【详解】,,或(舍).,,.当,时;当,时;当,时,,所以最小值为.故选:C.【点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
分别解得集合A与集合B的补集,再由集合交集的运算法则计算求得答案.【详解】由题可知,集合A中集合B的补集,则故答案为:【点睛】本题考查集合的交集与补集运算,属于基础题.14、【解析】
先求出集合,,然后根据交集、补集的定义求解即可.【详解】解:,或;∴;∴.故答案为:.【点睛】本题主要考查集合的交集、补集运算,属于基础题.15、【解析】
求导得到,讨论和两种情况,计算时,函数在上单调递减,故,不符合,排除,得到答案。【详解】因为,所以,因为,所以.当,即时,,则在上单调递增,从而,故符合题意;当,即时,因为在上单调递增,且,所以存在唯一的,使得.令,得,则在上单调递减,从而,故不符合题意.综上,的取值范围是.故答案为:.【点睛】本题考查了不等式恒成立问题,转化为函数的最值问题是解题的关键.16、【解析】
求出和的值,利用点斜式可得出所求切线的方程.【详解】,则,,.因此,函数在处的切线方程是,即.故答案为:.【点睛】本题考查利用导数求函数的切线方程,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】
(1)求出函数的定义域为,,分和两种情况讨论,分析函数的单调性,求出函数的最大值,即可得出关于实数的不等式,进而可求得实数的取值范围;(2)利用导数分析出函数在上递增,在上递减,可得出,由,构造函数,证明出,进而得出,再由函数在区间上的单调性可证得结论.【详解】(1)函数的定义域为,且.当时,对任意的,,此时函数在上为增函数,函数为最大值;当时,令,得.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,函数在处取得极大值,亦即最大值,即,解得.综上所述,实数的取值范围是;(2)当时,,定义域为,,当时,;当时,.所以,函数的单调递增区间为,单调递减区间为.由于函数有两个零点、且,,,构造函数,其中,,令,,当时,,所以,函数在区间上单调递减,则,则.所以,函数在区间上单调递减,,,即,即,,且,而函数在上为减函数,所以,,因此,.【点睛】本题考查利用函数的最值求参数,同时也考查了利用导数证明函数不等式,利用所证不等式的结构构造新函数是解答的关键,考查推理能力与计算能力,属于难题.18、(1);(2).【解析】
(1)由l参数方程与椭圆方程联立可得A、B两点参数和,再利用M点的参数为A、B两点参数和的一半即可求M的坐标;(2)利用直线参数方程的几何意义得到,再利用计算即可,但要注意判别式还要大于0.【详解】(1)由已知,曲线的参数方程为(为参数),其普通方程为,当时,将(为参数)代入得,设直线l上A、B两点所对应的参数为,中点M所对应的参数为,则,所以的坐标为;(2)将代入得,则,因为即,所以,故,由得,所以.【点睛】本题考查了伸缩变换、参数方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道中档题.19、(1)证明见解析;(2).【解析】
(1)要证明面面,只需证明面即可;(2)以为坐标原点,以,,分别为,,轴建系,分别计算出面法向量,面的法向量,再利用公式计算即可.【详解】证明:(1)因为底面为正方形,所以又因为,,满足,所以又,面,面,,所以面.又因为面,所以,面面.(2)由(1)知,,两两垂直,以为坐标原点,以,,分别为,,轴建系如图所示,则,,,,则,.所以,,,,设面法向量为,则由得,令得,,即;同理,设面的法向量为,则由得,令得,,即,所以,设二面角的大小为,则所以二面角余弦值为.【点睛】本题考查面面垂直的证明以及利用向量法求二面角,考查学生的运算求解能力,此类问题关键是准确写出点的坐标,是一道中档题.20、(1);(2)(i)详见解析;(ii)会超过;详见解析【解析】
(1)利用组合进行计算以及概率表示,可得结果.(2)(i)写出X所有可能取值,并计算相对应的概率,列出表格可得结果.(ii)由(i)的条件结合7月与8月空气质量所对应的概率,可得7月与8月经济损失的期望和,最后7月、8月、9月经济损失总额的数学期望与2.88万元比较,可得结果.【详解】(1)设ξ为选取的3天中空气质量为优的天数,则P(ξ=2),P(ξ=3),则这3天中空气质量至少有2天为优的概率为;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故该企业9月的经济损失的数学期望为30E(X),即30E(X)=9060元,设7月、8月每天因空气质量造成的经济损失为Y元,可得:,,,E(Y)=02201480320(元),所以该企业7月、8月这两个月因空气质量造成经济损失总额的数学期望为320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月这三个月因空气质量造成经济损失总额的数学期望会超过2.88万元.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度能源项目合同财产保全担保书范本3篇
- 2025年度个人装修贷款协议书3篇
- 二零二五年度60岁以上人员社区教育辅导劳动合同模板3篇
- 2024-2025学年新教材高中政治第3单元就业与创业单元综合提升教案新人教版选择性必修2
- 2025版智能交通管理系统建设运营履约担保合同4篇
- 2025年度喷灌系统节能改造技术合同4篇
- 2025年度在线教育平台兼职外教远程教学合同4篇
- 2025年度宿舍管理员职业发展规划聘用合同
- 二零二五年度驾校教练员职业发展承包合同3篇
- 2025年度马赛克材料研发与应用采购合同4篇
- C及C++程序设计课件
- 带状疱疹护理查房
- 公路路基路面现场测试随机选点记录
- 平衡计分卡-化战略为行动
- 国家自然科学基金(NSFC)申请书样本
- 幼儿教师干预幼儿同伴冲突的行为研究 论文
- 湖南省省级温室气体排放清单土地利用变化和林业部分
- 材料设备验收管理流程图
- 培训机构消防安全承诺书范文(通用5篇)
- (完整版)建筑业10项新技术(2017年最新版)
- 第8期监理月报(江苏版)
评论
0/150
提交评论