2025届上海市虹口区复兴高中高三第六次模拟考试数学试卷含解析_第1页
2025届上海市虹口区复兴高中高三第六次模拟考试数学试卷含解析_第2页
2025届上海市虹口区复兴高中高三第六次模拟考试数学试卷含解析_第3页
2025届上海市虹口区复兴高中高三第六次模拟考试数学试卷含解析_第4页
2025届上海市虹口区复兴高中高三第六次模拟考试数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市虹口区复兴高中高三第六次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱锥中,,,则三棱锥外接球的表面积是()A. B. C. D.2.不等式的解集记为,有下面四个命题:;;;.其中的真命题是()A. B. C. D.3.函数的部分图象如图所示,则()A.6 B.5 C.4 D.34.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.5.空气质量指数是反映空气状况的指数,指数值趋小,表明空气质量越好,下图是某市10月1日-20日指数变化趋势,下列叙述错误的是()A.这20天中指数值的中位数略高于100B.这20天中的中度污染及以上(指数)的天数占C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好6.已知平行于轴的直线分别交曲线于两点,则的最小值为()A. B. C. D.7.已知全集,集合,则()A. B. C. D.8.公比为2的等比数列中存在两项,,满足,则的最小值为()A. B. C. D.9.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.10.设函数,若函数有三个零点,则()A.12 B.11 C.6 D.311.如图,四边形为正方形,延长至,使得,点在线段上运动.设,则的取值范围是()A. B. C. D.12.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.若函数为偶函数,则________.14.已知“在中,”,类比以上正弦定理,“在三棱锥中,侧棱与平面所成的角为、与平面所成的角为,则________.15.某校为了解家长对学校食堂的满意情况,分别从高一、高二年级随机抽取了20位家长的满意度评分,其频数分布表如下:满意度评分分组合计高一1366420高二2655220根据评分,将家长的满意度从低到高分为三个等级:满意度评分评分70分70评分90评分90分满意度等级不满意满意非常满意假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件:“高一家长的满意度等级高于高二家长的满意度等级”,则事件发生的概率为__________.16.成都市某次高三统考,成绩X经统计分析,近似服从正态分布,且,若该市有人参考,则估计成都市该次统考中成绩大于分的人数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)时,求不等式解集;(2)若的解集包含于,求a的取值范围.18.(12分)在直角坐标系中,曲线的参数方程为(为参数).点在曲线上,点满足.(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求动点的轨迹的极坐标方程;(2)点,分别是曲线上第一象限,第二象限上两点,且满足,求的值.19.(12分)函数(1)证明:;(2)若存在,且,使得成立,求取值范围.20.(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验1000次.方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案②中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)21.(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项.(1)求证:数列为等差数列;(2)设,求的前100项和.22.(10分)已知函数,.(1)若曲线在点处的切线方程为,求,;(2)当时,,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【详解】取的中点,连接、,由和都是正三角形,得,,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.2、A【解析】

作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.3、A【解析】

根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令=0,即=kπ,k=0时解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故选:A.【点睛】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.4、A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.5、C【解析】

结合题意,根据题目中的天的指数值,判断选项中的命题是否正确.【详解】对于,由图可知天的指数值中有个低于,个高于,其中第个接近,第个高于,所以中位数略高于,故正确.对于,由图可知天的指数值中高于的天数为,即占总天数的,故正确.对于,由图可知该市月的前天的空气质量越来越好,从第天到第天空气质量越来越差,故错误.对于,由图可知该市月上旬大部分指数在以下,中旬大部分指数在以上,所以该市月上旬的空气质量比中旬的空气质量好,故正确.故选:【点睛】本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.6、A【解析】

设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值.【详解】解:设直线为,则,,而满足,那么设,则,函数在上单调递减,在上单调递增,所以故选:.【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.7、D【解析】

根据函数定义域的求解方法可分别求得集合,由补集和交集定义可求得结果.【详解】,,,.故选:.【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.8、D【解析】

根据已知条件和等比数列的通项公式,求出关系,即可求解.【详解】,当时,,当时,,当时,,当时,,当时,,当时,,最小值为.故选:D.【点睛】本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.9、A【解析】

本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【点睛】本道题考查了抛物线的基本性质,难度中等.10、B【解析】

画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果.【详解】作出函数的图象如图所示,令,由图可得关于的方程的解有两个或三个(时有三个,时有两个),所以关于的方程只能有一个根(若有两个根,则关于的方程有四个或五个根),由,可得的值分别为,则故选B.【点睛】本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.11、C【解析】

以为坐标原点,以分别为x轴,y轴建立直角坐标系,利用向量的坐标运算计算即可解决.【详解】以为坐标原点建立如图所示的直角坐标系,不妨设正方形的边长为1,则,,设,则,所以,且,故.故选:C.【点睛】本题考查利用向量的坐标运算求变量的取值范围,考查学生的基本计算能力,本题的关键是建立适当的直角坐标系,是一道基础题.12、B【解析】

因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【详解】请在此输入详解!二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

二次函数为偶函数说明一次项系数为0,求得参数,将代入表达式即可求解【详解】由为偶函数,知其一次项的系数为0,所以,,所以,故答案为:-5【点睛】本题考查由奇偶性求解参数,求函数值,属于基础题14、【解析】

类比,三角形边长类比三棱锥各面的面积,三角形内角类比三棱锥中侧棱与面所成角.【详解】,故,【点睛】本题考查类比推理.类比正弦定理可得,类比时有结构类比,方法类比等.15、0.42【解析】

高一家长的满意度等级高于高二家长的满意度等级有三种情况,分别求出三种情况的概率,再利用加法公式即可.【详解】由已知,高一家长满意等级为不满意的概率为,满意的概率为,非常满意的概率为,高二家长满意等级为不满意的概率为,满意的概率为,非常满意的概率为,高一家长的满意度等级高于高二家长的满意度等级有三种情况:1.高一家长满意,高二家长不满意,其概率为;2.高一家长非常满意,高二家长不满意,其概率为;3.高一家长非常满意,高二家长满意,其概率为.由加法公式,知事件发生的概率为.故答案为:【点睛】本题考查独立事件的概率,涉及到概率的加法公式,是一道中档题.16、.【解析】

根据正态分布密度曲线性质,结合求得,即可得解.【详解】根据正态分布,且,所以故该市有人参考,则估计成都市该次统考中成绩大于分的人数为.故答案为:.【点睛】此题考查正态分布密度曲线性质的理解辨析,根据曲线的对称性求解概率,根据总人数求解成绩大于114的人数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)代入可得对分类讨论即可得不等式的解集;(2)根据不等式在上恒成立去绝对值化简可得再去绝对值即可得关于的不等式组解不等式组即可求得的取值范围【详解】(1)当时,不等式可化为,①当时,不等式为,解得;②当时,不等式为,无解;③当时,不等式为,解得,综上,原不等式的解集为.(2)因为的解集包含于,则不等式可化为,即.解得,由题意知,解得,所以实数a的取值范围是.【点睛】本题考查了绝对值不等式的解法分类讨论解绝对值不等式的应用,含参数不等式的解法.难度一般.18、(1)();(2)【解析】

(1)由已知,曲线的参数方程消去t后,要注意x的范围,再利用普通方程与极坐标方程的互化公式运算即可;(2)设,,由(1)可得,,相加即可得到证明.【详解】(1),∵,∴,∴,由题可知:,:().(2)因为,设,,则,,.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,考查学生的计算能力,是一道容易题.19、(1)证明见详解;(2)或或【解析】

(1)(2)首先用基本不等式得到,然后解出不等式即可【详解】(1)因为所以(2)当时所以当且仅当即时等号成立因为存在,且,使得成立所以所以或解得:或或【点睛】1.要熟练掌握绝对值的三角不等式,即2.应用基本不等式求最值时要满足“一正二定三相等”.20、(1)分布列见解析;(2)406.【解析】

(1)计算个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为,得到分布列.(2)计算,代入数据计算比较大小得到答案.【详解】(1)设每个人的血呈阴性反应的概率为,则.所以个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为.依题意可知,,所以的分布列为:(2)方案②中.结合(1)知每个人的平均化验次数为:时,,此时1000人需要化验的总次数为690次,时,,此时1000人需要化验的总次数为604次,时,,此时1000人需要化验的次数总为594次,即时化验次数最多,时次数居中,时化验次数最少,而采用方案①则需化验1000次,故在这三种分组情况下,相比方案①,当时化验次数最多可以平均减少次.【点睛】本题考查了分布列,数学期望,意在考查学生的计算能力和应用能力.21、(1)证明见解析;(2).【解析】

(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论