版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学精编资源专题52变量间的相关关系、统计案例一、必备知识1.相关关系与回归方程(1)相关关系的分类①正相关在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.②负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(2)线性回归方程能用直线方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))近似表示的相关关系叫做线性相关关系,该方程叫线性回归方程.(3)最小平方法是一种求回归直线的方法,用这种方法求得的回归直线能使样本数据的点到回归直线的距离的平方和最小.(4)给出一组数据(x1,y1),(x2,y2),…,(xn,yn),用最小平方法求得线性回归方程的系数eq\o(a,\s\up6(^)),eq\o(b,\s\up6(^))满足eq\b\lc\{\rc\(\a\vs4\al\co1(\o(b,\s\up11(^))=\f(n\o(∑,\s\up6(n),\s\do4(i=1))xiyi-\o(∑,\s\up6(n),\s\do4(i=1))xi\o(∑,\s\up6(n),\s\do4(i=1))yi,n\o(∑,\s\up6(n),\s\do4(i=1))x\o\al(2,i)-\o(∑,\s\up6(n),\s\do4(i=1))xi2),,\o(a,\s\up6(^))=\x\to(y)-b\x\to(x).))上式还可以表示为eq\b\lc\{\rc\(\a\vs4\al\co1(\o(b,\s\up11(^))=\f(\o(∑,\s\up6(n),\s\do4(i=1))xiyi-n\x\to(x)\x\to(y),\o(∑,\s\up6(n),\s\do4(i=1))x\o\al(2,i)-n\x\to(x)2)=\f(\o(∑,\s\up6(n),\s\do4(i=1))xi-\x\to(x)yi-\x\to(y),\o(∑,\s\up6(n),\s\do4(i=1))xi-\x\to(x)2),,,\o(a,\s\up6(^))=\x\to(y)-b\x\to(x).))(5)回归分析①定义:对具有相关关系的两个变量进行统计分析的一种常用方法.②样本点的中心对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其中(eq\x\to(x),eq\x\to(y))称为样本点的中心.③相关系数|r|≤1;当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.(6)对相关系数r进行显著性检验的基本步骤①提出统计假设H0:变量x,y不具有线性相关关系;②如果以95%的把握作出判断,那么可以根据1-0.95=0.05与n-2在教材附录2中查出一个r的临界值r0.05(其中1-0.95=0.05称为检验水平);③计算样本相关系数r;④作出统计推断:若|r|>r0.05,则否定H0,表明有95%的把握认为x与y之间具有线性相关关系;若|r|≤r0.05,则没有理由拒绝原来的假设H0,即就目前数据而言,没有充分理由认为y与x之间有线性相关关系.2.独立性检验(1)2×2列联表一般地,对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值,即类A和类B,Ⅱ也有两类取值,即类1和类2,得到如下列联表所示的抽样数据:Ⅱ类1类2合计Ⅰ类Aaba+b类Bcdc+d合计a+cb+da+b+c+d上述表格称为2×2列联表.|ad-bc|越小,说明两个分类变量x,y之间的关系越弱;|ad-bc|越大,说明两个分类变量x,y之间的关系越强.(2)χ2统计量χ2=eq\f(nad-bc2,a+cb+da+bc+d).用χ2的大小可判断事件A,B有关联的可信程度.(3)独立性检验①独立性检验的步骤要判断“Ⅰ与Ⅱ有关系”,可按下面的步骤进行:a.提出假设H0:Ⅰ与Ⅱ没有关系;b.根据2×2列联表及χ2公式,计算χ2的值;c.查对临界值,作出判断.其中临界值如表所示:P(χ2≥x0)0.500.400.250.150.100.050.0250.0100.0050.001x00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828表示在H0成立的情况下,事件“χ2≥x0”发生的概率.②推断依据a.若χ2>10.828,则有99.9%的把握认为“Ⅰ与Ⅱ有关系”;b.若χ2>6.635,则有99%的把握认为“Ⅰ与Ⅱ有关系”;c.若χ2>2.706,则有90%的把握认为“Ⅰ与Ⅱ有关系”;d.若χ2≤2.706,则认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,但也不能作出结论“H0成立”,即不能认为Ⅰ与Ⅱ没有关系.二、高频考点+重点题型考点一.相关关系的判断例1-1.两个变量的相关关系有①正相关,②负相关,③不相关,则下列散点图从左到右分别反映的变量间的相关关系是()A.①②③ B.②③①C.②①③ D.①③②对点练1.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是()A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关对点练2.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的人体脂肪含量与年龄关系的散点图.根据该图,下列结论中正确的是()A.人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%B.人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%C.人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%D.人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%对点练3.根据如下样本数据:x345678y4.02.50.50.50.40.1得到的线性回归方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),则()A.eq\o(a,\s\up6(^))>0,eq\o(b,\s\up6(^))>0 B.eq\o(a,\s\up6(^))>0,eq\o(b,\s\up6(^))<0C.eq\o(a,\s\up6(^))<0,eq\o(b,\s\up6(^))>0 D.eq\o(a,\s\up6(^))<0,eq\o(b,\s\up6(^))<0例1-2.变量X与Y相应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1 D.r2=r1对点练1.在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=eq\f(1,2)x+1上,则这组样本数据的样本相关系数为()A.-1 B.0C.eq\f(1,2) D.1对点练2.(多选)在统计中,由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)利用最小二乘法得到两个变量的线性回归方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),那么下列说法正确的是()A.相关系数r不可能等于1B.直线eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))必经过点(eq\x\to(x),eq\x\to(y))C.直线eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))表示最接近y与x之间真实关系的一条直线D.相关系数为r,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小对点练3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为eq\o(y,\s\up6(^))=0.85x-85.71,则下列结论中不正确的是________.(填序号)①y与x具有正的线性相关关系;②回归直线过样本点的中心(eq\x\to(x),eq\x\to(y));③若该大学某女生身高增加1cm,则其体重约增加0.85kg;④若该大学某女生身高为170cm,则可断定其体重必为58.79kg.考点二.回归分析例2-1.某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.(1)若甲公司计划从这10次竞价中随机抽取3次竞价进行调研,其中每小时点击次数超过7次的竞价抽取次数记为,求的分布列与数学期望;(2)若把乙公司设置的每次点击价格为x,每小时点击次数为,则点近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线.(附:回归方程系数公式:,).对点练1.(2020•山东菏泽二模)李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据(xi,yi)(i=1,2,…,6),如表所示:单价x(千元)345678销量y(百件)7065625956t已知.(1)若变量x,y具有线性相关关系,求产品销量y(百件)关于试销单价x(千元)的线性回归方程;(2)用(1)中所求的线性回归方程得到与xi对应的产品销量的估计值.当销售数据(xi,yi)对应的残差的绝对值时,则将销售数据(xi,yi)称为一个“好数据”.现从6个销售数据中任取3个子,求“好数据”个数ξ的分布列和数学期望E(ξ).(参考公式:线性回归方程中的估计值分别为.例2-2.下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:eq\o(y,\s\up6(^))=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:eq\o(y,\s\up6(^))=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.对点练1.张三同学从每年生日时对自己的身高测量后记录如表:(附:回归直线的斜率和截距的最小二乘法估计公式分别为:,)(1)求身高关于年龄的线性回归方程;(可能会用到的数据:(cm))(2)利用(1)中的线性回归方程,分析张三同学岁起到岁身高的变化情况,如岁之前都符合这一变化,请预测张三同学岁时的身高。例2-3.(2020•福建南平)某购物商场分别推出支付宝和微信“扫码支付”购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用“扫码支付”。现统计了活动刚推出一周内每天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次,统计数据如下表所示:(1)根据散点图判断,在推广期内,扫码支付的人次y关于活动推出天数x的回归方程适合用y=c·dx来表示,求出该回归方程,并预测活动推出第8天使用扫码支付的人次;(2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受8折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受7折优惠的概率为,享受8折优惠的概率为,享受9折优惠的概率为。现有一名顾客购买了a元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少?。参考数据:设参考公式:对于一组数据(ui,vi),(u2,v2),…(un,vn),其回归直线的斜率和截距的最小二乘估计公式分别为:。对点练1.(2020山东高三模拟)某公司为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.15.253.630.2692085.5-230.30.7877.049表中,(1)根据散点图判断:y=a+bx与y=c+哪一个模型更适合作为该图书每册的成本费y与印刷数量x的回归方程?(只要求给出判断,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程(结果精确到0.01);(3)若该图书每册的定价为9.22元,则至少应该印刷多少册才能使销售利润不低于80000元?(假设能够全部售出,结果精确到1)附:对于一组数据(ω1,v1),(ω2,v2),…,(ωn,vn),其回归直线的斜率和截距的最小二乘估计分别为,.考点三.独立性检验例3-1.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:理科文科男1310女720已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=eq\f(50×(13×20-10×7)2,23×27×20×30)≈4.844.则认为选修文科与性别有关系出错的可能性为________.例3-2.(多选)为了考察某种药物预防疾病的效果,进行动物试验,得到如下药物效果与动物试验的列联表:患病未患病总计服用药104555没服用药203050总计3075105由上述数据给出下列结论,其中正确的是()附:K2=eq\f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d.P(K2≥k0)0.050.0250.0100.005k03.8415.0246.6357.879A.能在犯错误的概率不超过0.05的前提下认为药物有效B.不能在犯错误的概率不超过0.025的前提下认为药物有效C.能在犯错误的概率不超过0.010的前提下认为药物有效D.不能在犯错误的概率不超过0.005的前提下认为药物有效例3-3.为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议.为调查该校学生每周平均体育运动时间的情况,从高一高二基础年级与高三三个年级学生中按照4∶3∶3的比例分层抽样,收集300位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图.(已知高一年级共有1200名学生)(1)据图估计该校学生每周平均体育运动时间,并估计高一年级每周平均体育运动时间不足4小时的人数;(2)规定每周平均体育运动时间不少于6小时记为“优秀”,否则为“非优秀”,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成下列2×2列联表,并判断是否有99%的把握认为“该校学生的每周平均体育运动时间是否‘优秀’与年级有关”.基础年级高三合计优秀非优秀合计300附:χ2=eq\f(nad-bc2,a+bc+da+cb+d).参考数据:P(χ2≥x0)0.1000.0500.0100.005x02.7063.8416.6357.879对点练1.(2017·全国Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(χ2≥x0)0.0500.0100.001x03.8416.63510.828χ2=eq\f(nad-bc2,a+bc+da+cb+d).对点练2.(2019·河北名校联考)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)频数126386182分组[30.02,30.06)[30.06,30.10)[30.10,30.14]频数92614乙厂:分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)频数297185159分组[30.02,30.06)[30.06,30.10)[30.10,30.14]频数766218(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据完成下面2×2列联表,并判断是否有99%的把握认为“两个分厂生产的零件的质量有差异”.甲厂乙厂总计优质品非优质品总计对点练3.“微信运动”已成为当下热门的运动方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:步数性别0-20002001-50005001-80008001-10000>10000男12368女0210620.100.050.0250.0102.7063.8415.0246.635附:(1)已知某人一天的走路步数超过8000步被系统评定为“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?积极型懈怠型总计男女总计(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有人,超过10000步的有人,设,求的分布列及数学期望.巩固训练单选题1.已知变量x,y之间具有线性相关关系,其散点图如图所示,回归直线l的方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),则下列说法正确的是()A.eq\o(a,\s\up6(^))>0,eq\o(b,\s\up6(^))<0B.eq\o(a,\s\up6(^))>0,eq\o(b,\s\up6(^))>0C.eq\o(a,\s\up6(^))<0,eq\o(b,\s\up6(^))<0D.eq\o(a,\s\up6(^))<0,eq\o(b,\s\up6(^))>02.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()A.l1和l2必定平行B.l1与l2必定重合C.l1和l2一定有公共点(s,t)D.l1与l2相交,但交点不一定是(s,t)3.为调查中学生近视情况,测得某校150名男生中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力()A.回归分析 B.均值与方差C.独立性检验 D.概率4.下面是2×2列联表:y1y2合计x1a2173x2222547合计b46120则表中a,b的值分别为()A.94,72 B.52,50C.52,74 D.74,525.某医疗机构通过抽样调查(样本容量n=1000),利用2×2列联表和χ2统计量研究患肺病是否与吸烟有关.计算得χ2=4.453,经查阅临界值表知P(χ2≥3.841)≈0.05,现给出四个结论,其中正确的是()A.在100个吸烟的人中约有95个人患肺病B.若某人吸烟,那么他有95%的可能性患肺病C.有95%的把握认为“患肺病与吸烟有关”D.只有5%的把握认为“患肺病与吸烟有关”6.下列现象中线性相关程度最强的是()A.商店的职工人数与商品销售额之间的线性相关系数为0.87B.流通费用率与商业利润率之间的线性相关系数为-0.94C.商品销售额与商业利润率之间的线性相关系数为0.51D.商品销售额与流通费用率之间的线性相关系数为0.707.以下关于线性回归的判断,正确的个数是()①若散点图中所有点都在一条直线附近,则这条直线为回归直线;②散点图中的绝大多数点都在一条直线附近,个别特殊点不影响线性回归,如图中的A,B,C点;③已知线性回归方程为eq\o(y,\s\up6(^))=0.50x-0.81,则x=25时,y的估计值为11.69;④回归直线的意义是它反映了样本整体的变化趋势.A.0B.1C.2D.38.(2019·南通模拟)2018世界特色魅力城市200强新鲜出炉,包括黄山市在内的28个中国城市入选,美丽的黄山风景和人文景观迎来众多宾客.现在很多人喜欢“自助游”,某调查机构为了了解“自助游”是否与性别有关,在黄山旅游节期间,随机抽取了100人,得如下所示的列联表:赞成“自助游”不赞成“自助游”合计男性301545女性451055合计7525100参考公式:χ2=eq\f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d.P(χ2≥x0)0.150.100.050.0250.0100.0050.001x02.0722.7063.8415.0246.6357.87910.828参照公式,得到的正确结论是()A.有99.5%以上的把握认为“赞成‘自助游’与性别无关”B.有99.5%以上的把握认为“赞成‘自助游’与性别有关”C.在犯错误的概率不超过0.1的前提下,认为“赞成‘自助游’与性别无关”D.在犯错误的概率不超过0.1的前提下,认为“赞成‘自助游’与性别有关”9.(2020·焦作模拟)根据下表中的数据可以得到线性回归方程eq\o(y,\s\up6(^))=0.7x+0.35,则实数m,n应满足()x3m56y2.534nA.n-0.7m=1.7 B.n-0.7m=1.5C.n+0.7m=1.7 D.n+0.7m=1.510.(2019·福州四校联考)某汽车的使用年数x与所支出的维修总费用y的统计数据如表:使用年数x/年12345维修总费用y/万元0.51.22.23.34.5根据上表可得y关于x的线性回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x-0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用(不足1年按1年计算)()A.8年B.9年C.10年D.11年多选题11.(多选)下列说法中错误的是()A.将一组数据中的每一个数据都加上或减去同一个常数后,方差不变B.设有一个线性回归方程eq\o(y,\s\up6(^))=3-5x,变量x增加1个单位时,y平均增加5个单位C.设具有相关关系的两个变量x,y的相关系数为r,则|r|越接近于0,x和y之间的线性相关程度越强D.在一个2×2列联表中,由计算得χ2的值,则χ2的值越大,判断两个变量间有关联的把握就越大12.(多选)小明同学在做市场调查时得到如下样本数据.x13610y8a42他由此得到回归方程为eq\o(y,\s\up6(^))=-2.1x+15.5,则下列说法正确的是()A.变量x与y线性负相关B.当x=2时可以估计y=11.3C.a=6D.变量x与y之间是函数关系填空题13.已知某次考试之后,班主任从全班同学中随机抽取一个容量为8的样本,他们的数学、物理成绩(单位:分)对应如下表:学生编号12345678数学成绩6065707580859095物理成绩7277808488909395给出散点图如下:根据以上信息,判断下列结论:①根据散点图,可以判断数学成绩与物理成绩具有线性相关关系;②根据散点图,可以判断数学成绩与物理成绩具有一次函数关系;③从全班随机抽取甲、乙两名同学,若甲同学数学成绩为80分,乙同学数学成绩为60分,则甲同学的物理成绩一定比乙同学的物理成绩高.其中正确的个数为________.14.在一次考试中,5名学生的数学和物理成绩如下表:(已知学生的数学和物理成绩具有线性相关关系)学生的编号i12345数学成绩x8075706560物理成绩y7066686462现已知其线性回归方程为eq\o(y,\s\up6(^))=0.36x+eq\o(a,\s\up6(^)),则根据此线性回归方程估计数学得90分的同学的物理成绩为________.(四舍五入到整数)15.某工厂为了对一种新研究的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)456789销量y(件)908483807568由表中数据,求得线性回归方程为eq\o(y,\s\up6(^))=-4x+eq\o(a,\s\up6(^)).若在这些样本点中任取一点,则它在回归直线左下方的概率为________.16.在一组样本数据(x1,y1),(x2,y2),…,(x6,y6)的散点图中,若所有样本点(xi,yi)(i=1,2,…,6)都在曲线y=bx2-eq\f(1,2)附近波动.经计算eq\o(∑,\s\up11(6),\s\do4(i=1))xi=12,eq\o(∑,\s\up11(6),\s\do4(i=1))yi=14,eq\o(∑,\s\up11(6),\s\do4(i=1))xeq\o\al(2,i)=23,则实数b的值为________.解答题17.某淘宝店经过对春节七天假期的消费者的消费金额进行统计,发现在消费金额不超过1000元的消费者中男女比例为1∶4,该店按此比例抽取了100名消费者进行进一步分析,得到下表:女性消费情况:消费金额/元(0,200)[200,400)[400,600)[600,800)[800,1000]人数51015473男性消费情况:消费金额/元(0,200)[200,400)[400,600)[600,800)[800,1000]人数231032若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”.(1)分别计算女性和男性消费的平均数,并判断平均消
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工安全协议书模板
- 2025年度枣树种植与现代农业园区建设合同4篇
- 行业间对于展会安全管理知识的普及推广
- 网络安全背景下学生行为规范的强化措施
- 科技助力孩子艺术成长现代教学方法与实践
- 二零二五年度车辆担保质押投资合作合同4篇
- 2025版施工安全协议书:装配式建筑安全协议范本3篇
- 维护策略在实验室设备长期运行中的重要性
- 二零二五年度车牌租赁与车辆租赁信用评估合同4篇
- 岩棉防火技术在现代建筑中的应用研究
- 人教版数学四年级下册核心素养目标全册教学设计
- JJG 692-2010无创自动测量血压计
- 三年级下册口算天天100题(A4打印版)
- 徐州市2023-2024学年八年级上学期期末地理试卷(含答案解析)
- CSSD职业暴露与防护
- 饮料对人体的危害1
- 数字经济学导论-全套课件
- 移动商务内容运营(吴洪贵)项目三 移动商务运营内容的策划和生产
- 中考记叙文阅读
- 产科沟通模板
- 2023-2024学年四川省成都市小学数学一年级下册期末提升试题
评论
0/150
提交评论