版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、选择题(本大题共10小题,每题4分,共40分)1.下列运算结果是正数的是(
)A.
B.
C.
D.
2.下列图案中,既是轴对称图形又是中心对称图形的是(
)A.
B.
C.
D.
3.我国大力发展新质生产力,推动了新能源汽车产业的快速发展.据中国汽车工业协会发布的消息显示.2024年1至3月,我国新能源汽车完成出口的的值是(
)A.4
B.5
C.6
D.74.如图,已知,平分.若,则的度数是(
)A.
B.
C.
D.
5.数学兴趣小组成员小刚对自己的学习质量进行了测试.如图是他最近五次测试成绩(满分为100分)的折线统计图,那么其平均数和方差分别是(
)A.95分,
B.96分,
C.95分,10
D.96分,106.如图,在综合与实践活动课上,小强先测得教学楼在水平地面上的影长为.又在点处测得该楼的顶端的仰角是.则用科学计算器计算教学楼高度的按键顺序正确的是(
)
A.
B.
C.
D.
7.《九章算术》中提到:今有户高多于广六尺八寸.两隅相去适一丈.问户高、广各几何?其大意为:已知矩形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?(1丈尺,1尺寸)若设门的高和宽分别是尺和尺.则下面所列方程组正确的是(
)A.
B.
C.
D.
8.如图所示,在矩形中,,点,分别在边,上.连接,将四边形沿翻折,点,分别落在点,处.则的值是(
)A.2
B.
C.
D.
9.如图所示,正方形与(其中边,分别在,轴的正半轴上)的公共顶点在反比例函数的图象上,直线与,轴分别相交于点,.若这两个正方形的面积之和是,且.则的值是(
)A.5
B.1
C.3
D.210.某日,甲、乙两人相约在一条笔直的健身道路上锻炼.两人都从地匀速出发,甲健步走向地.途中偶遇一位朋友,驻足交流后,继续以原速步行前进;乙因故比甲晚出发,跑步到达地后立刻以原速返回,在返回途中与甲第二次相遇.下图表示甲、乙两人之间的距离与甲出发的时间之间的函数关系.(
)那么以下结论:①甲、乙两人第一次相遇时,乙的锻炼用时为;②甲出发时,甲、乙两人之间的距离达到最大值;③甲、乙两人第二次相遇的时间是在甲出发后;④,两地之间的距离是.其中正确的结论有:A.①②③
B.①②④
C.①③④
D.②③④二、填空题(共5小题,每题4分,共20分)11.
计算:__________.12.如图,已知,两点的坐标分别为,,将线段平移得到线段.若点的对应点是,则点的对应点的坐标是_____13.若多项式能用完全平方公式因式分解,则的值是_____.14.如图,在边长为10的菱形中,对角线,相交与点,点在延长线上,与相交与点.若,,则菱形的面积为__________.15.如图,在平面直角坐标系中,作直线与轴相交于点,与抛物线相交于点,连接,相交于点,得和,若将其面积之比记为,则__________.三、解答题(共8题90分)16.解不等式组:并求所有整数解的和.17.如图,已知,点,在线段上,且.请从①;②;③中.选择一个合适的选项作为已知条件,使得.你添加的条件是:__________(只填写一个序号)添加条件后,请证明.18.化简分式:,并求值(请从小宇和小丽的对话中确定,的值)
19.希望中学做了如下表的调查报告(不完整):调查目的了解本校学生:(1)周家务劳动的时间;(2)最喜欢的劳动课程调查方式随机问卷调查调查对象部分七年级学生(该校所有学生周家务劳动时间都在范围内)调查内容(1)你的周家务劳动时间(单位:)是①②③④⑤(2)你最喜欢的劳动课程是(必选且只选一门)A家政
B.烹饪
C.剪纸
D.园艺
E.陶艺调查结果
结合调查信息,回答下列问题:(1)参与本次问卷调查的学生人数________名;在扇形统计图中,第④组所对应扇形的圆心角的度数为________度;(2)补全周家务劳动时间的频数直方图:(3)若该校七年级学生共有800人,请估计最喜欢“烹饪”课程的学生人数;(4)小红和小颖分别从“家政”等五门最喜欢的劳动课程中任选一门学习,请用列表法或画树状图的方法,求两人恰好选到同一门课程的概率.20.“我运动,我健康,我快乐!”随着人们对身心健康的关注度越来越高.某市参加健身运动的人数逐年增多,从2021年的32万人增加到2023年的50万人.(1)求该市参加健身运动人数的年均增长率;(2)为支持市民的健身运动,市政府决定从公司购买某种套装健身器材.该公司规定:若购买不超过100套,每套售价1600元;若超过100套,每增加10套,售价每套可降低40元.但最低售价不得少于1000元.已知市政府向该公司支付货款24万元,求购买的这种健身器材的套数.21.如图,一次函数的图象与反比例函数的图象相交于,两点,与,轴分别相交于点,.且.(1)分别求这两个函数的表达式;(2)以点为圆心,线段的长为半径作弧与轴正半轴相交于点,连接,.求的面积;(3)根据函数的图象直接写出关于的不等式的解集.22.在综合与实践活动课上,小明以“圆”为主题开展研究性学习.【操作发现】小明作出了为(不与点,重合),连接,然后将绕点逆时针旋转得到.如图①小明发现:与的位置关系是__________,请说明理由:【实践探究】连接,与相交于点.如图②,小明又发现:当确定时,线段的长存在最大值.请求出当.时,长的最大值;【问题解决】在图②中,小明进一步发现:点分线段所成的比与点分线段所成的比始终相等.请予以证明.23.如图,抛物线与轴相交于,两点(点在点的左侧),其中,是方程的两个根,抛物线与轴相交于点.(1)求该抛物线对应的函数表达式;(2)已知直线与,轴分别相交于点,.①设直线与相交于点,问在第三象限内的抛物线上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由;②过抛物线上一点作直线的平行线.与抛物线相交于另一点.设直线,相交于点.连接,.求线段的最小值参考答案一、选择题(本大题共10小题,每题4分,共40分)【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】A【9题答案】【答案】C【10题答案】【答案】B二、填空题(共5小题,每题4分,共20分)【11题答案】【答案】【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】96【15题答案】【答案】三、解答题(共8题90分)【16题答案】【答案】,【17题答案】【答案】①(或②)【18题答案】【答案】;【19题答案】【答案】(1)100,
(2)见解析
(3)估计最喜欢“烹饪”课程的学生人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025车祸私了和解协议书
- (2024)人造刚玉项目可行性研究报告写作范本(一)
- 2024秋新沪科版物理八年级上册课件 第六章 熟悉而陌生的力 第1节 力及其描述
- 2023年体外循环管路项目筹资方案
- 平安夜圣诞节介绍活动方案215
- 电工(初级工)模拟习题含答案
- 山东省枣庄市2023-2024学年七年级上学期期末考试数学试卷(含解析)
- 养老院老人生活设施定期检查制度
- 养老院老人安全教育培训制度
- 《家庭心理咨询》课件
- 《预防未成年人犯罪》课件(图文)
- 创新实践(理论)学习通超星期末考试答案章节答案2024年
- 大国外交演讲与辩论智慧树知到期末考试答案章节答案2024年中国石油大学(华东)
- 2024化工园区危险品运输车辆停车场建设规范
- 星期音乐会智慧树知到期末考试答案章节答案2024年同济大学
- MOOC 综合英语-中南大学 中国大学慕课答案
- (2024年)2型糖尿病教学查房学习教案
- 国开学习网电大数据库应用技术第四次形考作业实验答案
- 等差数列的概念及其通项公式.PPT
- 商品-次品处理流程
- 湖南高考历年英语作文汇总
评论
0/150
提交评论