北师大版九年级上册数学期中考试试题及答案_第1页
北师大版九年级上册数学期中考试试题及答案_第2页
北师大版九年级上册数学期中考试试题及答案_第3页
北师大版九年级上册数学期中考试试题及答案_第4页
北师大版九年级上册数学期中考试试题及答案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版九年级上册数学期中考试试卷一、选择题。(每小题只有一个正确答案)1.如图,分别以线段的两个端点为圆心,大于的一半的长为半径画弧,两弧分别交于,两点,连接,,,,则四边形一定是()A.正方形 B.矩形 C.梯形 D.菱形2.如图,在正方形的外侧,作等边,则为()A.15° B.35° C.45° D.55°3.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=04.下列一元二次方程中,没有实数根的是().A. B.C. D.5.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A. B. C. D.6.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖7.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.已知四边形ABCD的中点四边形是正方形,对角线AC与BD的关系,下列说法正确的是()A.AC,BD相等且互相平分 B.AC,BD垂直且互相平分C.AC,BD相等且互相垂直 D.AC,BD垂直且平分对角8.一个菱形的边长为,面积为,则该菱形的两条对角线的长度之和为()A. B. C. D.9.已知,是方程的两个实数根,则的值是()A.2023 B.2021 C.2020 D.201910.若2-是方程x2-4x+c=0的一个根,则c的值是()A.1 B.3- C.1+ D.2+二、填空题11.若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a的值是_____.12.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.13.如图,,是正方形的对角线上的两点,,,则四边形的周长是_____.14.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.15.如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若,则=__.16.若关于的一元二次方程的一个根为,则这个一元二次方程的另一个根为_________.三、解答题17.解方程:2x2﹣x﹣3=0.18.某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?19.如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.20.一个不透明的口袋里装有分别标有汉字“书”、“香”、“校”、“园”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“书香”的概率.21.如图,AC是□ABCD的对角线,延长BA至点E,使AE=AB,连接DE.(1)求证:四边形ACDE是平行四边形;(2)连接EC交AD于点O,若∠EOD=2∠B,求证:四边形ACDE是矩形.22.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求PD.23.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.24.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.25.在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B,(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为,请直接写出点C的坐标.参考答案1.D【解析】根据四边相等的四边形是菱形即可判断.【详解】解:由作图可知:,∴四边形是菱形,故选:D.【点睛】本题考查基本作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.2.C【分析】根据正方形的性质及等边三角形的性质求出∠DAE=150°,∠AED=15°,再求∠BED.【详解】在正方形中,,,在等边中,,,在中,,,所以,,所以.故选C.【点睛】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠AED=15°.3.C【详解】解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=60,化简整理得,x2﹣9x+8=0.故选C.4.D【分析】分别计算出每个方程的判别式即可判断.【详解】A、∵△=4-4×1×0=4>0,∴方程有两个不相等的实数根,故本选项不符合题意;B、∵△=16-4×1×(-1)=20>0,∴方程有两个不相等的实数根,故本选项不符合题意;C、∵△=25-4×3×2=1>0,∴方程有两个不相等的实数根,故本选项不符合题意;D、∵△=16-4×2×3=-8<0,∴方程没有实数根,故本选项正确;故选:D.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.B【详解】分析:先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.详解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选B.点睛:本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.6.A【详解】分析:利用概率的意义和必然事件的概念的概念进行分析.详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选A.点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.7.C【分析】利用中点四边形的判定方法得到答案即可.【详解】顺次连接对角线相等的四边形的四边中点得到的是菱形,顺次连接对角线垂直的四边形的四边中点得到的是矩形,顺次连接对角线相等且垂直的四边形的四边中点得到的四边形是正方形,故选C.【点睛】本题考查了中点四边形的知识,牢记其规律是解答本题的关键.8.C【分析】如图,根据菱形的性质可得,,,再根据菱形的面积为,可得①,由边长结合勾股定理可得②,由①②两式利用完全平方公式的变形可求得,进行求得,即可求得答案.【详解】如图所示:四边形是菱形,,,,面积为,①菱形的边长为,②,由①②两式可得:,,,即该菱形的两条对角线的长度之和为,故选C.【点睛】本题考查了菱形的性质,菱形的面积,勾股定理等,熟练掌握相关知识是解题的关键.9.A【分析】根据题意可知b=3-b2,a+b=-1,ab=-3,所求式子化为a2-b+2019=a2-3+b2+2019=(a+b)2-2ab+2016即可求解.【详解】,是方程的两个实数根,∴,,,∴;故选A.【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.10.A【分析】把2﹣代入方程x2﹣4x+c=0就得到关于c的方程,就可以解得c的值.【详解】把2﹣代入方程x2﹣4x+c=0,得(2﹣)2﹣4(2﹣)+c=0,解得:c=1.故选A.【点睛】本题考查的是一元二次方程的根即方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.11.﹣2.【分析】根据根的判别式得出,求出即可.【详解】∵关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,∴△=(2+a)2﹣4×1×0=0,解得:a=﹣2,故答案为﹣2.【点睛】本题考查了根的判别式和一元二次方程的解,能根据根的判别式和已知得出是解此题的关键.12.【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.13.【分析】连接交于点,则可证得,,可证四边形为平行四边形,且,可证得四边形为菱形;根据勾股定理计算的长,可得结论.【详解】如图,连接交于点,∵四边形为正方形,∴,,∵,∴,即,∴四边形为平行四边形,且,∴四边形为菱形,∴,∵,,由勾股定理得:,∴四边形的周长,故答案为.【点睛】本题考查了正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.14.3【分析】由四边形ABCD是菱形,OB=4,根据菱形的性质可得BD=8,在根据菱形的面积等于两条对角线乘积的一半求得AC=6,再根据直角三角形斜边的中线等于斜边的一半即可求得OH的长.【详解】∵四边形ABCD是菱形,OB=4,∴OA=OC,BD=2OB=8;∵S菱形ABCD=24,∴AC=6;∵AH⊥BC,OA=OC,∴OH=AC=3.故答案为3.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式(菱形的面积等于两条对角线乘积的一半)求得AC=6是解题的关键.15.【分析】连接GE,根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,∠BFE=90°,利用“HL”证明Rt△EDG≌Rt△EFG,根据全等三角形对应边相等可得FG=DG,根据,设DG=FG=a,则AG=7a,故AD=BC=8a,则BG=BF+FG=9a,由勾股定理求得AB=,再求比值即可.【详解】连接GE,∵点E是CD的中点,∴EC=DE,∵将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,∴EF=DE,∠BFE=90°,在Rt△EDG和Rt△EFG中,∴Rt△EDG≌Rt△EFG(HL),∴FG=DG,∵,∴设DG=FG=a,则AG=7a,故AD=BC=8a,则BG=BF+FG=9a,∴AB=,故,故答案为.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,以及翻折变换的性质,熟记性质并作辅助线构造出全等三角形是解题的关键.16.-2【分析】由题目已知x=1是方程的根,代入方程后求出k的值,再利用一元二次方程的求根方法即可答题.【详解】解:将x=1代入一元二次方程有:,k=-1,方程即方程的另一个根为x=-2故本题的答案为-2.【点睛】本题主要考查了一元二次方程用已知根求方程未知系数以及利用因式分解法解一元二次方程,其中利用已知根代入方程求出未知系数是解题的关键.17.x1=,x2=-1.【分析】利用因式分解法即可求解.【详解】(2x-3)(x+1)=0,则2x-3=0,x+1=0,解得:x1=,x2=-1.18.(1)10%;(2)26620元【分析】(1)设2016年到2018年该村人均收入的年平均增长率为x,根据某村2016年的人均收入为20000元,2018年的人均收入为24200元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由2019年村该村的人均收入=2018年该村的人均收入×(1+年平均增长率),即可得出结论.【详解】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:,解得:,(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)(元).答:预测2019年村该村的人均收入是26620元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.19.证明见解析.【详解】分析:根据AAS证明△ABM≌△EFA,可得结论.详解:证明:∵四边形ABCD为正方形,∴∠B=90°,AD∥BC,∴∠EAF=∠BMA,∵EF⊥AM,∴∠AFE=90°=∠B,在△ABM和△EFA中,∵,∴△ABM≌△EFA(AAS),∴AB=EF.点睛:本题考查了正方形的性质、三角形全等的性质和判定,熟练掌握三角形全等的判定是关键.20.(1);(2)【分析】(1)写有“书”的小球只有1个,所以球上的汉字刚好是“书”的概率为;(2)画出树状图,然后找出取出两个球的汉字能组成“书香”的个数,用组成“书香”的个数比总数即为所求的概率.【详解】(1)写有“书”的小球只有1个,所以从中任取一个球,球上的汉字刚好是“书”的概率为;(2)画树状图为:共有12种等可能的结果数,其中取出的两个球上的汉字能组成“书香”的结果数为2,所以P(取出的两个球上的汉字能组成“书香”)【点睛】本题主要考查用树状图或列表法求随机事件的概率,画出树状图是解题的关键,再用所求情况数与总数之比求概率即可.21.(1)见解析;(2)见解析.【分析】(1)由平行四边形的性质可得AB=CD,AB∥CD,结合AE=AB由一组对边平行且相等的四边形是平行四边形可证四边形ACDE是平行四边形;(2)由三角形的外角可证∠ADC=∠OCD,可得OC=OD,即可得AD=EC,可证四边形ACDE是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=AB,∴AE=CD,且AB∥CD,∴四边形ACDE是平行四边形;(2)∵四边形ABCD是平行四边形,∴∠B=∠ADC,∵∠EOD=2∠B∴∠EOD=2∠ADC,且∠EOD=∠ADC+∠OCD,∴∠ADC=∠OCD,∴OC=OD,∵四边形ACDE是平行四边形,∴AO=DO,EO=CO,∴AD=CE,∴四边形ACDE是矩形.【点睛】本题考查了矩形的判定,平行四边形的判定和性质,灵活运用平行四边形的性质是本题的关键.22.(1)证明见解析;(2).【分析】(1)由四边形ABCD是平行四边形,得到AD∥BC,从而得到∠AFB=∠FBE,再由∠ABF=∠FBE,推出∠ABF=∠AFB,于是得到AB=AF,同理得出AB=BE,于是得出结论;(2)由菱形的性质得出AE⊥BF,得到∠ABF=30°,∠BAP=∠FAP=60°从而得出AP=2,过点P作PM⊥AD于M,得到PM=,AM=1,DM=5,然后利用勾股定理求PD即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBE.∵∠ABF=∠FBE,∴∠ABF=∠AFB,∴AB=AF,同理AB=BE,∴四边形ABEF是菱形;(2)∵四边形ABEF是菱形,∴AE⊥BF.∵∠ABC=60°,∴∠ABF=30°,∠BAP=∠FAP=60°.∵AB=4,∴AP=2,如图,过点P作PM⊥AD于M,∴PM=,AM=1.∵AD=6,∴DM=5,∴PD=.【点睛】本题主要考查了平行四边形的性质,菱形的判定和性质,含30°直角三角形的性质以及勾股定理,通过等量代换推出角相等进而得到边相等是证明此题中菱形的关键.23.(1)200,;(2)1224人;(3)见解析,.【分析】(1)用喜欢阅读“A”类图书的学生数除以它所占的百分比得到调查的总人数;用喜欢阅读“B”类图书的学生数所占的百分比乘以调查的总人数得到m的值,然后用30除以调查的总人数可以得到n的值;(2)用3600乘以样本中喜欢阅读“A”类图书的学生数所占的百分比即可;(3)画树状图展示所有6种等可能的结果数,找出被选送的两名参赛者为一男一女的结果数,然后根据概率公式求解.【详解】解:(1),所以本次调查共抽取了200名学生,,,即;(2),所以估计该校喜欢阅读“A”类图书的学生约有1224人;(3)画树状图为:共有6种等可能的结果数,其中被选送的两名参赛者为一男一女的结果数为4,所以被选送的两名参赛者为一男一女的概率.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.(1)见解析;(2)45°;(3)见解析.【分析】(1)根据AF平分∠BAD,可得∠BAF=∠DAF,利用四边形ABCD是平行四边形,求证∠CEF=∠F即可;(2)根据∠ABC=90°,G是EF的中点可直接求得;(3)分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形,由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案.【详解】(1)证明:如图1,

∵AF平分∠BAD,

∴∠BAF=∠DAF,

∵四边形ABCD是平行四边形,

∴AD∥BC,AB∥CD,

∴∠DAF=∠CEF,∠BAF=∠F,

∴∠CEF=∠F.

∴CE=CF.

(2)解:连接GC、BG,

∵四边形ABCD为平行四边形,∠ABC=90°,

∴四边形ABCD为矩形,

∵AF平分∠BAD,

∴∠DAF=∠BAF=45°,

∵∠DCB=90°,DF∥AB,

∴∠DFA=45°,∠ECF=90°

∴△ECF为等腰直角三角形,

∵G为EF中点,

∴EG=CG=FG,CG⊥EF,

∵△ABE为等腰直角三角形,AB=DC,

∴BE=DC,

∵∠CEF=∠GCF=45°,

∴∠BEG=∠DCG=135°

在△BEG与△DCG中,

∵,

∴△BEG≌△DCG,

∴BG=DG,

∵CG⊥EF,

∴∠DGC+∠DGA=90°,

又∵∠DGC=∠BGA,

∴∠BGA+∠DGA=90°,

∴△DGB为等腰直角三角形,

∴∠BDG=45°.

(3)解:延长AB、FG交于H,连接HD.

∵AD∥GF,AB∥DF,

∴四边形AHFD为平行四边形

∵∠ABC=120°,AF平分∠BAD

∴∠DAF=30°,∠ADC=120°,∠DFA=30°

∴△DAF为等腰三角形

∴AD=DF,

∴CE=CF,

∴平行四边形AHFD为菱形

∴△ADH,△DHF为全等的等边三角形

∴DH=DF,∠BHD=∠GFD=60°

∵FG=CE,CE=CF,CF=BH,

∴BH=GF

在△BHD与△GFD中,

∵,

∴△BHD≌△GFD,

∴∠BDH=∠GDF

∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.【点睛】本题考查了平行四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论