2025届铜陵市重点中学高三二诊模拟考试数学试卷含解析_第1页
2025届铜陵市重点中学高三二诊模拟考试数学试卷含解析_第2页
2025届铜陵市重点中学高三二诊模拟考试数学试卷含解析_第3页
2025届铜陵市重点中学高三二诊模拟考试数学试卷含解析_第4页
2025届铜陵市重点中学高三二诊模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届铜陵市重点中学高三二诊模拟考试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为()变量x0123变量y35.57A.0.9 B.0.85 C.0.75 D.0.52.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A. B. C. D.3.设等差数列的前n项和为,若,则()A. B. C.7 D.24.设是虚数单位,则“复数为纯虚数”是“”的()A.充要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分不必要条件5.设复数满足为虚数单位),则()A. B. C. D.6.等比数列的各项均为正数,且,则()A.12 B.10 C.8 D.7.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.8.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.9.函数的图象大致是()A. B.C. D.10.单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→‥,黑蚂蚁爬行的路线是AB→BB1→‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是()A.1 B. C. D.011.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A. B. C. D.512.设集合(为实数集),,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若函数有个不同的零点,则的取值范围是___________.14.双曲线的焦距为__________,渐近线方程为________.15.在的展开式中,常数项为________.(用数字作答)16.曲线在处的切线的斜率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点在椭圆上.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.18.(12分)某早餐店对一款新口味的酸奶进行了一段时间试销,定价为元/瓶.酸奶在试销售期间足量供应,每天的销售数据按照,,,分组,得到如下频率分布直方图,以不同销量的频率估计概率.从试销售期间任选三天,求其中至少有一天的酸奶销量大于瓶的概率;试销结束后,这款酸奶正式上市,厂家只提供整箱批发:大箱每箱瓶,批发成本元;小箱每箱瓶,批发成本元.由于酸奶保质期短,当天未卖出的只能作废.该早餐店以试销售期间的销量作为参考,决定每天仅批发一箱(计算时每个分组取中间值作为代表,比如销量为时看作销量为瓶).①设早餐店批发一大箱时,当天这款酸奶的利润为随机变量,批发一小箱时,当天这款酸奶的利润为随机变量,求和的分布列和数学期望;②以利润作为决策依据,该早餐店应每天批发一大箱还是一小箱?注:销售额=销量×定价;利润=销售额-批发成本.19.(12分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.20.(12分)已知是公比为的无穷等比数列,其前项和为,满足,________.是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由.从①,②,③这三个条件中任选一个,补充在上面问题中并作答.21.(12分)设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上,的周长为.(1)求椭圆C的标准方程;(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.22.(10分)椭圆:的左、右焦点分别是,,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.(1)求椭圆的标准方程;(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、、三点共线.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

计算,代入回归方程可得.【详解】由题意,,∴,解得.故选:A.【点睛】本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点.2、B【解析】

根据题意表示出各位上的数字所对应的算筹即可得答案.【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的.故选:.【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题.3、B【解析】

根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果.【详解】因为,所以,所以,所以,故选:B【点睛】本题主要考查等差数列的性质及前项和公式,属于基础题.4、D【解析】

结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.【详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D【点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.5、B【解析】

易得,分子分母同乘以分母的共轭复数即可.【详解】由已知,,所以.故选:B.【点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.6、B【解析】

由等比数列的性质求得,再由对数运算法则可得结论.【详解】∵数列是等比数列,∴,,∴.故选:B.【点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.7、B【解析】

利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.8、D【解析】

利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.9、A【解析】

根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.10、B【解析】

根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1.计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离.【详解】由题意,白蚂蚁爬行路线为AA1→A1D1→D1C1→C1C→CB→BA,即过1段后又回到起点,可以看作以1为周期,由,白蚂蚁爬完2020段后到回到C点;同理,黑蚂蚁爬行路线为AB→BB1→B1C1→C1D1→D1D→DA,黑蚂蚁爬完2020段后回到D1点,所以它们此时的距离为.故选B.【点睛】本题考查多面体和旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.11、D【解析】

根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【详解】依题意得,,,因此该双曲线的离心率.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.12、A【解析】

根据集合交集与补集运算,即可求得.【详解】集合,,所以所以故选:A【点睛】本题考查了集合交集与补集的混合运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

作出函数的图象及直线,如下图所示,因为函数有个不同的零点,所以由图象可知,,,所以.14、6【解析】由题得所以焦距,故第一个空填6.由题得渐近线方程为.故第二个空填.15、【解析】

的展开式的通项为,取计算得到答案.【详解】的展开式的通项为:,取得到常数项.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力.16、【解析】

求出函数的导数,利用导数的几何意义令,即可求出切线斜率.【详解】,,,即曲线在处的切线的斜率.故答案为:【点睛】本题考查了导数的几何意义、导数的运算法则以及基本初等函数的导数,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)详见解析.【解析】

(Ⅰ)把点代入椭圆方程,结合离心率得到关于的方程,解方程即可;(Ⅱ)联立直线与椭圆方程得到关于的一元二次方程,利用韦达定理和中垂线的定义求出线段的中垂线方程即可证明.【详解】(Ⅰ)由已知椭圆过点得,,又,得,所以,即椭圆方程为.(Ⅱ)证明:由,得,由,得,由韦达定理可得,,设的中点为,得,即,,的中垂线方程为,即,故得中垂线恒过点.【点睛】本题考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系及椭圆中的定值问题;考查运算求解能力和知识的综合运用能力;正确求出椭圆方程和利用中垂线的定义正确表示出中垂线方程是求解本题的关键;属于中档题.18、;①详见解析;②应该批发一大箱.【解析】

酸奶每天销量大于瓶的概率为,不大于瓶的概率为,设“试销售期间任选三天,其中至少有一天的酸奶销量大于瓶”为事件,则表示“这三天酸奶的销量都不大于瓶”.利用对立事件概率公式求解即可.①若早餐店批发一大箱,批发成本为元,依题意,销量有,,,四种情况,分别求出相应概率,列出分布列,求出的数学期望,若早餐店批发一小箱,批发成本为元,依题意,销量有,两种情况,分别求出相应概率,由此求出的分布列和数学期望;②根据①中的计算结果,,从而早餐应该批发一大箱.【详解】解:根据图中数据,酸奶每天销量大于瓶的概率为,不大于瓶的概率为.设“试销售期间任选三天,其中至少有一天的酸奶销量大于瓶”为事件,则表示“这三天酸奶的销量都不大于瓶”.所以.①若早餐店批发一大箱,批发成本为元,依题意,销量有,,,四种情况.当销量为瓶时,利润为元;当销量为瓶时,利润为元;当销量为瓶时,利润为元;当销量为瓶时,利润为元.随机变量的分布列为所以(元)若早餐店批发一小箱,批发成本为元,依题意,销量有,两种情况.当销量为瓶时,利润为元;当销量为瓶时,利润为元.随机变量的分布列为所以(元).②根据①中的计算结果,,所以早餐店应该批发一大箱.【点睛】本题考查概率,离散型随机变量的分布列、数学期望的求法,考查古典概型、对立事件概率计算公式等基础知识,属于中档题.19、(1)见解析(2).【解析】

(1)与平面垂直,过点作与平面平行的平面即可(2)建立空间直角坐标系求线面角正弦值【详解】解:(1)截面如下图所示:其中,,,,分别为边,,,,的中点,则垂直于平面.(2)建立如图所示的空间直角坐标系,则,,,,,所以,,.设平面的一个法向量为,则.不妨取,则,所以与该平面所成角的正弦值为.(若将作为该平面法向量,需证明与该平面垂直)【点睛】考查确定平面的方法以及线面角的求法,中档题.20、见解析【解析】

选择①或②或③,求出的值,然后利用等比数列的求和公式可得出关于的不等式,判断不等式是否存在符合条件的正整数解,在有解的情况下,解出不等式,进而可得出结论.【详解】选择①:因为,所以,所以.令,即,,所以使得的正整数的最小值为;选择②:因为,所以,.因为,所以不存在满足条件的正整数;选择③:因为,所以,所以.令,即,整理得.当为偶数时,原不等式无解;当为奇数时,原不等式等价于,所以使得的正整数的最小值为.【点睛】本题考查了等比数列的通项公式求和公式,考查了推理能力与计算能力,属于中档题.21、(1)(2)见解析【解析】

(1)由,周长,解得,即可求得标准方程.(2)通过特殊情况的斜率不存在时,求得,再证明的斜率存在时,即可证得为定值.通过设直线的方程为与椭圆方程联立,借助韦达定理求得,利用直线与圆相切,即,求得的关系代入,化简即可证得即可证得结论.【详解】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论