版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省宜昌市重点中学2025届高三第二次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合的所有三个元素的子集记为.记为集合中的最大元素,则()A. B. C. D.2.设复数z=,则|z|=()A. B. C. D.3.如图,四面体中,面和面都是等腰直角三角形,,,且二面角的大小为,若四面体的顶点都在球上,则球的表面积为()A. B. C. D.4.设(是虚数单位),则()A. B.1 C.2 D.5.已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()A. B. C. D.6.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.7.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为()A.9 B.7 C. D.8.已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为()A. B. C. D.9.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A. B. C. D.10.设复数满足,则在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知函数,,则的极大值点为()A. B. C. D.12.已知集合,,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为()A. B.或C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为椭圆上的一个动点,,,设直线和分别与直线交于,两点,若与的面积相等,则线段的长为______.14.在数列中,,则数列的通项公式_____.15.若方程有两个不等实根,则实数的取值范围是_____________.16.若实数,满足不等式组,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)求不等式的解集;(2)记的最小值为,且正实数满足.证明:.18.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=1.(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M(2,0),若直线l与曲线C相交于P、Q两点,求的值.19.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)求曲线的直角坐标方程和曲线的参数方程;(2)设曲线与曲线在第二象限的交点为,曲线与轴的交点为,点,求的周长的最大值.20.(12分)已知凸边形的面积为1,边长,,其内部一点到边的距离分别为.求证:.21.(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.22.(10分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值以及此时的直角坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【详解】集合含有个元素的子集共有,所以.在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以.故选:.【点睛】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.2、D【解析】
先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.3、B【解析】
分别取、的中点、,连接、、,利用二面角的定义转化二面角的平面角为,然后分别过点作平面的垂线与过点作平面的垂线交于点,在中计算出,再利用勾股定理计算出,即可得出球的半径,最后利用球体的表面积公式可得出答案.【详解】如下图所示,分别取、的中点、,连接、、,由于是以为直角等腰直角三角形,为的中点,,,且、分别为、的中点,所以,,所以,,所以二面角的平面角为,,则,且,所以,,,是以为直角的等腰直角三角形,所以,的外心为点,同理可知,的外心为点,分别过点作平面的垂线与过点作平面的垂线交于点,则点在平面内,如下图所示,由图形可知,,在中,,,所以,,所以,球的半径为,因此,球的表面积为.故选:B.【点睛】本题考查球体的表面积,考查二面角的定义,解决本题的关键在于找出球心的位置,同时考查了计算能力,属于中等题.4、A【解析】
先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出.【详解】∵,∴.故选:A.【点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题.5、A【解析】
利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程.【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,,则的渐近线方程为.故选A.【点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.6、D【解析】
先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D【点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.7、C【解析】
根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,,则.因为平面,平面,所以.又,,所以平面,则.易知,.在中,,即,化简得.在中,,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.8、A【解析】
根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【详解】解:设点到平面的距离为,因为是中点,所以到平面的距离为,三棱锥的体积,解得,作平面,垂足为的外心,所以,且,所以在中,,此为球的半径,.故选:A.【点睛】本题考查球的表面积,考查点到平面的距离,属于中档题.9、D【解析】
设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.10、C【解析】
化简得到,得到答案.【详解】,故,对应点在第三象限.故选:.【点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.11、A【解析】
求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可.【详解】因为,故可得,令,因为,故可得或,则在区间单调递增,在单调递减,在单调递增,故的极大值点为.故选:A.【点睛】本题考查利用导数求函数的极值点,属基础题.12、C【解析】
根据韦恩图可确定所表示集合为,根据一元二次不等式解法和定义域的求法可求得集合,根据补集和交集定义可求得结果.【详解】由韦恩图可知:阴影部分表示,,,.故选:.【点睛】本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先设点坐标,由三角形面积相等得出两个三角形的边之间的比例关系,这个比例关系又可用线段上点的坐标表示出来,从而可求得点的横坐标,代入椭圆方程得纵坐标,然后可得.【详解】如图,设,,,由,得,由得,∴,解得,又在椭圆上,∴,,∴.故答案为:.【点睛】本题考查直线与椭圆相交问题,解题时由三角形面积相等得出线段长的比例关系,解题是由把线段长的比例关系用点的横坐标表示.14、【解析】
由题意可得,又,数列的奇数项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【详解】解:∵,∴①,②,①﹣②得:,又∵,∴数列的奇数项为首项为1,公差为2的等差数列,∴当为奇数时,,当为偶数时,则为奇数,∴,∴数列的通项公式,故答案为:.【点睛】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式.15、【解析】
由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.16、5【解析】
根据题意,画出图像,数形结合,将目标转化为求动直线纵截距的最值,即可求解【详解】画出不等式组,表示的平面区域如图阴影区域所示,令,则.分析知,当,时,取得最小值,且.【点睛】本题考查线性规划问题,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)见解析【解析】
(1)根据,利用零点分段法解不等式,或作出函数的图像,利用函数的图像解不等式;(2)由(1)作出的函数图像求出的最小值为,可知,代入中,然后给等式两边同乘以,再将写成后,化简变形,再用均值不等式可证明.【详解】(1)解法一:1°时,,即,解得;2°时,,即,解得;3°时,,即,解得.综上可得,不等式的解集为或.解法二:由作出图象如下:由图象可得不等式的解集为或.(2)由所以在上单调递减,在上单调递增,所以,正实数满足,则,即,(当且仅当即时取等号)故,得证.【点睛】此题考查了绝对值不等式的解法,绝对值不等式的性质和均值不等式的运用,考查了分类讨论思想和转化思想,属于中档题.18、(1)l:,C方程为;(2)=【解析】
(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.
(2)利用一元二次方程根和系数关系式的应用求出结果.【详解】(1)曲线C的参数方程为(m为参数),两式相加得到,进一步转换为.直线l的极坐标方程为ρcos(θ+)=1,则转换为直角坐标方程为.(2)将直线的方程转换为参数方程为(t为参数),代入得到(t1和t2为P、Q对应的参数),所以,,所以=.【点睛】本题考查参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19、(1)曲线的直角坐标方程为,曲线的参数方程为为参数(2)【解析】
(1)将代入,可得,所以曲线的直角坐标方程为.由可得,将,代入上式,可得,整理可得,所以曲线的参数方程为为参数.(2)由题可设,,,所以,,,所以,因为,所以,所以当,即时,l取得最大值为,所以的周长的最大值为.20、证明见解析【解析】
由已知,易得,所以利用柯西不等式和基本不等式即可证明.【详解】因为凸边形的面积为1,所以,所以(由柯西不等式得)(由均值不等式得)【点睛】本题考查利用柯西不等式、基本不等式证明不等式的问题,考查学生对不等式灵活运用的能力,是一道容易题.21、(1);(2).【解析】
(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2).作出函数的图象,当直线与函数的图象有三个公共点时,方程有三个解,由图可得结果.【详解】(1)不等式,即为.当时,即化为,得,此时不等式的解集为,当时,即化为,解得,此时不等式的解集为.综上,不等式的解集为.(2)即.作出函数的图象如图所示,当直线与函数的图象有三个公共点时,方程有三个解,所以.所以实数的取值范围是.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.22、(1):,:;(2),此时.【解析】试题分析:(1)的普通方程为,的直角坐标方程为;(2)由题意,可设点的直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度软件项目后期维护居间代理合同3篇
- 2024年中小企业紧急融资支持合同3篇
- 2024年度金融科技行业专业人员聘用合同范文3篇
- 2024年度厦门二手房交易公约3篇
- 2024年度CNG配送服务质量监控合同2篇
- 2024年度企业合并子公司并实现可持续发展协议下载3篇
- 2024年度教育资源整合:学校转让合同3篇
- 2024年度教育项目委托担保服务合同3篇
- 2024商铺租赁合同样本:商铺租赁合同签订前的租金价格谈判与确定3篇
- 2024年版股权转让合同:股东之间关于某科技公司股权转让的法律文件3篇
- 水利工程档案管理实施细则
- 第七单元:长方形和正方形(讲义)-2024-2025学年三年级上册数学人教版
- 民族记忆与民族意识的民族学研究
- NB-T31003.2-2022风电场接入电力系统设计技术规范第2部分:海上风电
- 弱电智能化工程技术方案
- 编辑出版实务与技能(仅供参考)
- 《乳品加工工》技师培训课件-项目五 乳制品加工工艺及设备
- 2024-2025北师大版八年级上数学期末测试题及答案
- 人工智能与未来教育智慧树知到期末考试答案章节答案2024年丽水学院
- 走进歌剧世界智慧树知到期末考试答案章节答案2024年北京航空航天大学
- 三字经英文版-赵彦春
评论
0/150
提交评论