湖州职业技术学院《神经网络与深度学习》2023-2024学年第一学期期末试卷_第1页
湖州职业技术学院《神经网络与深度学习》2023-2024学年第一学期期末试卷_第2页
湖州职业技术学院《神经网络与深度学习》2023-2024学年第一学期期末试卷_第3页
湖州职业技术学院《神经网络与深度学习》2023-2024学年第一学期期末试卷_第4页
湖州职业技术学院《神经网络与深度学习》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页湖州职业技术学院

《神经网络与深度学习》2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在机器学习中,特征选择是一项重要的任务,旨在从众多的原始特征中选择出对模型性能有显著影响的特征。假设我们有一个包含大量特征的数据集,在进行特征选择时,以下哪种方法通常不被采用?()A.基于相关性分析,选择与目标变量高度相关的特征B.随机选择一部分特征,进行试验和比较C.使用递归特征消除(RFE)方法,逐步筛选特征D.基于领域知识和经验,手动选择特征2、在特征工程中,独热编码(One-HotEncoding)用于()A.处理类别特征B.处理数值特征C.降维D.以上都不是3、在一个强化学习场景中,智能体在探索新的策略和利用已有的经验之间需要进行平衡。如果智能体过于倾向于探索,可能会导致效率低下;如果过于倾向于利用已有经验,可能会错过更好的策略。以下哪种方法可以有效地控制这种平衡?()A.调整学习率B.调整折扣因子C.使用ε-贪婪策略,控制探索的概率D.增加训练的轮数4、深度学习是机器学习的一个重要分支,它利用深度神经网络进行学习。以下关于深度学习的说法中,错误的是:深度神经网络具有多层结构,可以自动学习数据的特征表示。深度学习在图像识别、语音识别等领域取得了巨大的成功。那么,下列关于深度学习的说法错误的是()A.卷积神经网络是一种专门用于处理图像数据的深度神经网络B.循环神经网络适用于处理序列数据,如文本、时间序列等C.深度神经网络的训练需要大量的计算资源和时间D.深度学习算法可以自动学习到最优的特征表示,不需要人工设计特征5、某机器学习项目需要对视频数据进行分析和理解。以下哪种方法可以将视频数据转换为适合机器学习模型处理的形式?()A.提取关键帧B.视频编码C.光流计算D.以上方法都可以6、假设要预测一个时间序列数据中的突然变化点,以下哪种方法可能是最合适的?()A.滑动窗口分析,通过比较相邻窗口的数据差异来检测变化,但窗口大小选择困难B.基于统计的假设检验,如t检验或方差分析,但对数据分布有要求C.变点检测算法,如CUSUM或Pettitt检验,专门用于检测变化点,但可能对噪声敏感D.深度学习中的异常检测模型,能够自动学习变化模式,但需要大量数据训练7、某研究需要对一个大型数据集进行降维,同时希望保留数据的主要特征。以下哪种降维方法在这种情况下可能较为合适?()A.主成分分析(PCA)B.线性判别分析(LDA)C.t-分布随机邻域嵌入(t-SNE)D.自编码器8、机器学习在自然语言处理领域有广泛的应用。以下关于机器学习在自然语言处理中的说法中,错误的是:机器学习可以用于文本分类、情感分析、机器翻译等任务。常见的自然语言处理算法有词袋模型、TF-IDF、深度学习模型等。那么,下列关于机器学习在自然语言处理中的说法错误的是()A.词袋模型将文本表示为词的集合,忽略了词的顺序和语法结构B.TF-IDF可以衡量一个词在文档中的重要性C.深度学习模型在自然语言处理中表现出色,但需要大量的训练数据和计算资源D.机器学习在自然语言处理中的应用已经非常成熟,不需要进一步的研究和发展9、在机器学习中,强化学习是一种通过与环境交互来学习最优策略的方法。假设一个机器人要通过强化学习来学习如何在复杂的环境中行走。以下关于强化学习的描述,哪一项是不正确的?()A.强化学习中的智能体根据环境的反馈(奖励或惩罚)来调整自己的行为策略B.Q-learning是一种基于值函数的强化学习算法,通过估计状态-动作值来选择最优动作C.策略梯度算法直接优化策略函数,通过计算策略的梯度来更新策略参数D.强化学习不需要对环境进行建模,只需要不断尝试不同的动作就能找到最优策略10、假设正在开发一个用于情感分析的深度学习模型,需要对模型进行优化。以下哪种优化算法在深度学习中被广泛使用?()A.随机梯度下降(SGD)B.自适应矩估计(Adam)C.牛顿法D.共轭梯度法11、在一个回归问题中,如果数据存在多重共线性,以下哪种方法可以用于解决这个问题?()A.特征选择B.正则化C.主成分回归D.以上方法都可以12、假设正在进行一个特征选择任务,需要从大量的特征中选择最具代表性和区分性的特征。以下哪种特征选择方法基于特征与目标变量之间的相关性?()A.过滤式方法B.包裹式方法C.嵌入式方法D.以上方法都可以13、在一个强化学习场景中,智能体需要在一个复杂的环境中学习最优策略。如果环境的奖励信号稀疏,以下哪种技术可以帮助智能体更好地学习?()A.奖励塑造B.策略梯度估计的改进C.经验回放D.以上技术都可以14、在一个监督学习问题中,我们需要评估模型在新数据上的泛化能力。如果数据集较小且存在类别不平衡的情况,以下哪种评估指标需要特别谨慎地使用?()A.准确率(Accuracy)B.召回率(Recall)C.F1值D.均方误差(MSE)15、在一个图像生成任务中,例如生成逼真的人脸图像,生成对抗网络(GAN)是一种常用的方法。GAN由生成器和判别器组成,它们在训练过程中相互对抗。以下关于GAN训练过程的描述,哪一项是不正确的?()A.生成器的目标是生成尽可能逼真的图像,以欺骗判别器B.判别器的目标是准确区分真实图像和生成器生成的图像C.训练初期,生成器和判别器的性能都比较差,生成的图像质量较低D.随着训练的进行,判别器的性能逐渐下降,而生成器的性能不断提升16、在强化学习中,智能体通过与环境交互来学习最优策略。如果智能体在某个状态下采取的行动总是导致低奖励,它应该()A.继续采取相同的行动,希望情况会改善B.随机选择其他行动C.根据策略网络的输出选择行动D.调整策略以避免采取该行动17、假设要开发一个自然语言处理的系统,用于文本情感分析,判断一段文字是积极、消极还是中性。考虑到文本的多样性和语义的复杂性。以下哪种技术和方法可能是最有效的?()A.基于词袋模型的朴素贝叶斯分类器,计算简单,但忽略了词序和上下文信息B.循环神经网络(RNN),能够处理序列数据,但可能存在梯度消失或爆炸问题C.长短时记忆网络(LSTM),改进了RNN的长期依赖问题,对长文本处理能力较强,但模型较复杂D.基于Transformer架构的预训练语言模型,如BERT或GPT,具有强大的语言理解能力,但需要大量的计算资源和数据进行微调18、假设正在开发一个用于图像识别的深度学习模型,需要选择合适的超参数。以下哪种方法可以用于自动搜索和优化超参数?()A.随机搜索B.网格搜索C.基于模型的超参数优化D.以上方法都可以19、在机器学习中,对于一个分类问题,我们需要选择合适的算法来提高预测准确性。假设数据集具有高维度、大量特征且存在非线性关系,同时样本数量相对较少。在这种情况下,以下哪种算法可能是一个较好的选择?()A.逻辑回归B.决策树C.支持向量机D.朴素贝叶斯20、想象一个文本分类的任务,需要对大量的新闻文章进行分类,如政治、经济、体育等。考虑到词汇的多样性和语义的复杂性。以下哪种词向量表示方法可能是最适合的?()A.One-Hot编码,简单直观,但向量维度高且稀疏B.词袋模型(BagofWords),忽略词序但计算简单C.分布式词向量,如Word2Vec或GloVe,能够捕捉词与词之间的语义关系,但对多义词处理有限D.基于Transformer的预训练语言模型生成的词向量,具有强大的语言理解能力,但计算成本高二、简答题(本大题共5个小题,共25分)1、(本题5分)解释如何在推荐系统中处理冷启动问题。2、(本题5分)解释机器学习中变分自编码器(VAE)的原理。3、(本题5分)什么是门控循环单元(GRU)?它与LSTM的区别是什么?4、(本题5分)什么是因果推断在机器学习中的应用?5、(本题5分)解释机器学习中随机森林的构建过程。三、应用题(本大题共5个小题,共25分)1、(本题5分)借助口腔医学数据辅助口腔疾病诊断。2、(本题5分)使用市场营销数据进行客户细分,制定精准营销策略。3、(本题5分)使用线性回归模型预测房价,给定一组房屋面积和对应的房价数据,进行模型训练和预测新房屋的价格。4、(本题5分)使用CNN对手写字母进行识别。5、(本题5分)使用朴素贝叶斯算法对网络流量进行异常检测。四、论述题(本大题共3个小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论