版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版八年级上册数学期末考试试卷2021年9月一、选择题。(每小题只有一个正确答案)1.若直线y=3x+6与直线y=2x+4的交点坐标为(a,b),则解为的方程组是()A.B.C.D.2.解不等式组的解集在数轴上表示正确的是()A.B.C.D.3.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.4.若二元一次方程组的解是二元一次方程的一个解,则为()A.3 B.5 C.7 D.95.等腰三角形的一个外角为110°,则它的顶角的度数是()A.40°B.70°C.40°或70°D.以上答案均不对6.如图,在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=,则△BCE的面积等于()A.3 B. C.4 D.7.以下四个命题中:①等腰三角形的两个底角相等②直角三角形的两个锐角互余③对顶角相等④线段垂直平分线上的点到线段两端点的距离相等,原命题与逆命题同时成立的个数有A.1 B.2 C.3 D.48.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)9.已知不等式组有解,则m的取值范围字数轴上可表示为()A. B.C. D.10.在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.11.在平直角坐标系中,已知点A(﹣4,0),B(2,0),若点C在一次函数y=﹣x+2的图象,且△ABC为等腰三角形,则满足条件的点C有()A.2个 B.3个 C.4个 D.5个12.在平面直角坐标系中,已知一次函数y=﹣x+6与x,y轴分别交于A,B两点,点C(0,n)是线段BO上一点,将△AOB沿直线AC折叠,点B刚好落在x轴负半轴上,则点C的坐标是()A.(0,3) B.(0,) C.(0,) D.(0,)13.已知a,b满足方程组则a+b的值为()A.﹣4 B.4 C.﹣2 D.2二、填空题14.如图,已知∠BDC=142º,∠B=34º,∠C=28º,则∠A=_______.15.若关于x的不等式组有且只有四个整数解,且一次函数y=(k+3)x+k+5的图象不经过第三象限,则符合题意的整数k为___.16.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上,设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…依据图形所反映的规律,S2019=_____.三、解答题17.解方程组和不等式组:(1)解方程组:(2)解不等式组:18.某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:(1)根据图示填写下表班级中位数(分)众数(分)平均数(分)一班85二班10085(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?(3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?19.已知不等式组的正整数解满足|6x﹣z|+(3x﹣y﹣m)2=0,并且y<0,求m的取值范围及z的值.20.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2.(1)求证:AB∥CD.(2)若∠D=∠3+50°,∠CBD=80°,求∠C的度数.21.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.22.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?23.如图,一次函数y=﹣x+4的图象分别与x轴,y轴的正半轴交于点E、F,一次函数y=kx﹣4的图象与直线EF交于点A(m,2),且交于x轴于点P,(1)求m的值及点E、F的坐标;(2)求△APE的面积;(3)若B点是x轴上的动点,问在直线EF上,是否存在点Q(Q与A不重合),使△BEQ与△APE全等?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案1.C【解析】两条直线的交点坐标即为这两条直线的解析式组成的方程组的解.【详解】解:∵直线y=3x+6与直线y=2x+4的交点坐标为(a,b),∴解为的方程组是,即.故选:C.【点睛】本题考查了一次函数与二元一次方程组的关系:任何一条直线y=kx+b都可以转化为kx+b﹣y=0(k,b为常数,k≠0)的形式,两条直线的交点坐标即为这两条直线的解析式组成的方程组的解.2.C【解析】【分析】分别求得不等式组中的两个不等式的解集,然后确定两个不等式的解集的公共部分,并表示在数轴上.【详解】解:解不等式①,得x≤﹣1.解不等式②,得x>﹣3,则原不等式组的解集为:﹣3<x≤﹣1.表示在数轴上为:.故选:C.【点睛】本题考查解不等式组,在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.C【分析】根据题意中的两种分法,分别找到等量关系:①组数×每组7人=总人数﹣3人;②组数×每组8人=总人数+5人.【详解】解:根据组数×每组7人=总人数﹣3人,得方程7y=x﹣3;根据组数×每组8人=总人数+5人,得方程8y=x+5.列方程组为.故选:C.【点睛】此题考查的是二元一次方程组的应用,掌握实际问题中的等量关系是解决此题的关键.4.C【分析】先用含a的代数式表示x、y,即解关于x、y的方程组,再代入中即可求解.【详解】解:解方程组,得,把x=2a,y=a代入方程,得,解得:a=7.故选C.【点睛】本题考查了解二元一次方程组和二元一次方程组的解的概念,求解的关键是先把a看成已知,通过解关于x、y的方程组,得到x、y与a的关系.5.C【解析】【分析】根据外角与相邻的内角的和为180°求这个内角的度数,再分这个角是顶角与底角两种情况讨论求解.【详解】解:∵等腰三角形的一个外角是110°,∴与这个外角相邻的内角是180°﹣110°=70°,①当70°角是顶角时,它的顶角度数是70°,②当70°角是底角时,它的顶角度数是180°﹣70°×2=40°,综上所述,它的顶角度数是70°或40°.故选:C.【点睛】本题考查等腰三角形的两底角相等的性质,要注意分两种情况讨论求解.6.B【分析】作EF⊥BC于F,根据角平分线的性质定理得到EF=DE=,根据三角形面积公式计算即可.【详解】解:作EF⊥BC于F,∵BE平分∠ABC,EF⊥BC,ED⊥AB,∴EF=DE=,∴△BCE的面积=×BC×EF=.故选B.【点睛】本题考查角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.C【解析】【分析】根据逆命题的概念分别写出各个命题的逆命题,根据等腰三角形的判定、直角三角形的判定、对顶角的性质、线段垂直平分线的判定定理判断.【详解】解:①等腰三角形的两个底角相等的逆命题是两个角相等的三角形是等腰三角形,原命题与逆命题同时成立;②直角三角形的两个锐角互余的逆命题是两个角互余的三角形是直角三角形,原命题与逆命题同时成立;③对顶角相等的逆命题是相等的角是对顶角,原命题成立,逆命题不成立;④线段垂直平分线上的点到线段两端点的距离相等的逆命题是到线段两端点的距离相等的点在线段垂直平分线上,原命题与逆命题同时成立.故选:C.【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.D【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,2),点D(0,2).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,2),D′(0,﹣2),所以,解得:,即可得直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,所以点P的坐标为(﹣,0).故答案选D.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.9.B【解析】【分析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.【详解】解:∵不等式组有解,∴在﹣1≤x<1内两不等式有公共部分.∵x≤m是“≤”号,∴折线必定向右.故选:B.【点睛】本题考查解一元一次不等式组及在数轴上表示不等式的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.10.C【解析】【分析】根据正比例函数与一次函数的图象性质作答.【详解】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限,当(k﹣2)x+k=kx时,x=<0,所以两函数交点的横坐标小于0.故选:C.【点睛】本题考查一次函数的图象性质,正比例函数的图象性质,关键是由k的取值确定函数所在的象限.11.D【解析】【分析】设C(m,m+2).构建方程即可解决问题.【详解】解:设C(m,m+2),①当CA=CB时,点C在线段AB的垂直平分线上,此时C(﹣1,).②当AC=AB时,(m+4)2+(m+2)2=36,解得:m=,∴C(,)或(,)③当BC=AB时,(2-m)2+(m+2)2=36,解得m=,∴C(,)或(,);综上所述,满足条件的点有5个.故选:D.【点睛】本题考查一次函数图象上的点的特征、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题.12.D【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为A(8,0),B(0,6),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=8,则DB=10-8=2,BC=6-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.【详解】过C作CD⊥AB于D,如图,对于直线y=-x+6,当x=0,得y=6;当y=0,x=8,∴A(8,0),B(0,6),即OA=8,OB=6,∴AB=10,又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,∴AC平分∠OAB,∴CD=CO=n,则BC=6-n,∴DA=OA=8,∴DB=10-8=2,在Rt△BCD中,DC2+BD2=BC2,∴n2+22=(6-n)2,解得n=,∴点C的坐标为(0,).故选D.【点睛】本题考查了求直线与坐标轴交点的坐标的方法:分别令x=0或y=0,求对应的y或x的值;也考查了折叠的性质和勾股定理.13.B【详解】试题解析:,①+②:4a+4b=16则a+b=4,故选B.考点:解二元一次方程组.14.80°【详解】本题考查了三角形的外角性质根据三角形的外角性质得到∠1=∠DAC+∠C,∠2=∠DAB+∠B,则有∠1+∠2=∠DAC+∠C+∠DAB+∠B,即∠BDC=∠A+∠B+∠C,然后把∠BDC=142°,∠B=34°,∠C=28°代入进行计算即可得到∠A的度数.连AD并延长,如图,∵∠1=∠DAC+∠C,∠2=∠DAB+∠B,∴∠1+∠2=∠DAC+∠C+∠DAB+∠B,∴∠BDC=∠A+∠B+∠C,而∠BDC=142°,∠B=34°,∠C=28°,∴142°=∠A+34°+28°,∴∠A=142°-34°-28°=80°.15.﹣4.【解析】【分析】根据关于x不等式组有且只有四个整数解得出k的取值范围,再由一次函数y=(k+3)x+k+5的图象不经过第三象限得出k取值范围,再找出其公共解集即可.【详解】解:解不等式组,得,<x≤2,∵不等式组有且只有四个整数解,∴其整数解为:﹣1,0,1,2,∴﹣2≤<﹣1,即﹣4≤k<﹣2.∵一次函数y=(k+3)x+k+5的图象不经过第三象限,∴,解得﹣5≤k<﹣3,∴﹣4≤k<﹣3,∴k的整数解只有﹣4.故答案为:﹣4.【点睛】本题考查一次函数与一元一次不等式,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.16..【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【详解】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×、S3=、……∴S2019=.故答案为.【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质,解题的关键是从特殊到一般,探究规律,利用规律解决问题.17.(1)(2)-3<x<5【解析】(1)解:,②×3-①,得11y=22,y=2;将y=1代入②,得x+6=9,x=3.∴方程组的解为.(2)解:,解①,得x>-3,解②,得x<5.∴不等式组的解为-3<x<518.(1)85、8580(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)一班成绩较为稳定.【分析】(1)观察图分别写出一班和二班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;
(2)在平均数相同的情况下,中位数高的成绩较好;
(3)根据方差公式计算即可:S2=(可简单记忆为“等于差方的平均数”)【详解】解:(1)由条形统计图可知一班5名选手的复赛成绩为:75、80、85、85、100,
二班5名选手的复赛成绩为:70、100、100、75、80,一班的众数为85,一班的平均数为(75+80+85+85+100)÷5=85,二班的中位数是80;班级中位数(分)众数(分)平均数(分)一班858585二班8010085故填:85、8580(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)
(3)S二班2=因为S一班2=70则S一班2<S二班2,因此一班成绩较为稳定.【点睛】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.19.m>3,z=6.【解析】【分析】先求出不等式组的解集,求出不等式组的正整数解,代入后根据绝对值、偶次方的非负性得出6-z=0,3-y-m=0,求出即可.【详解】解:∵解不等式①得:x<2,解不等式①得:x≤6,∴不等式组的解集为x<2,∴不等式组的正整数解为1,∵不等式组的正整数解满足|6x﹣z|+(3x﹣y﹣m)2=0,∴|6﹣z|+(3﹣y﹣m)2=0,∴6﹣z=0,3﹣y﹣m=0,∴z=6,y=3﹣m,∵y<0,∴3﹣m<0,∴m>3.故答案为:m>3,z=6.【点睛】本题考查解一元一次不等式组,不等式组的整数解,绝对值、偶次方的非负性的应用,解题的关键是能求出6-z=0和3-y-m=0.20.(1)证明见解析;(2)∠C=25°【分析】(1)根据内错角相等两直线平行即可证明;
(2)在△BDC中,利用三角形内角和定理构建方程即可解决问题.【详解】(1)证明:如图∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠2;又∵∠2=∠1,∴∠A=∠1,∴AB∥CD;(2)∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+50°,∠CBD=80°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.【点睛】考查平行线的判定和性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题.21.(1)35°;(2)3.5cm.【详解】试题分析:⑴根据垂直平分线的性质易得∠C=∠CAE,AB=AE=EC,由三角形外角的性质可知∠AED=2∠C,再由三角形内角和定理即可求得所求角的度数.⑵根据△ABC的周长与题中所给条件,可知AB+BC的长度,由⑴中所得相等的边易得,从而求得DC的长.试题解析:⑴∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴;⑵∵△ABC周长为13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.22.(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元【详解】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,∴,解得:50≤x≤53,∵x为正整数,∴共有4种进货方案;(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.总利润=50×20+50×30=2500(元)∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度木饰面原材料进口与分销合同3篇
- 2025年亲子遗赠协议草案
- 2025年代理商代理加盟采购合资合作协议
- 2025年合资合作收益分配协议
- 2025年企业外包劳务协议
- 2025年智慧城市物业管理服务标准合同范本6篇
- 漫谈加强物资管理提高企业经济效益-图文
- 《皮质醇增多征荆》课件
- 2025年度医院病理科诊断服务承包合同4篇
- 2025年度汽车转让及二手车交易税费减免合同
- 废旧物资买卖合同极简版
- 2024年正定县国资产控股运营集团限公司面向社会公开招聘工作人员高频考题难、易错点模拟试题(共500题)附带答案详解
- 智能衣服方案
- 李克勤红日标准粤语注音歌词
- 教科版六年级下册科学第一单元《小小工程师》教材分析及全部教案(定稿;共7课时)
- 中药材产地加工技术规程 第1部分:黄草乌
- 危险化学品经营单位安全生产考试题库
- 案例分析:美国纽约高楼防火设计课件
- 老客户维护方案
- 移动商务内容运营(吴洪贵)任务一 用户定位与选题
- 工作证明模板下载免费
评论
0/150
提交评论