版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题34圆综合测试卷考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2023·甘肃平凉·统考二模)如图,A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠AOF等于(
)
A.15° B.30° C.45° D.60°2.(3分)(2023·福建福州·校考模拟预测)如图,PA、PC分别与圆O相切于A、C两点,AB、BC为⊙O的两条弦,且PA∥BC,若tanP=43
A.52 B.43 C.533.(3分)(2023·湖北十堰·统考一模)如图,在⊙O的内接四边形ABCD中,AC⊥BD,AB=8,CD=2,则⊙O的直径为(
)
A.9 B.215 C.217 4.(3分)(2023·江苏苏州·统考模拟预测)如图,扇形AOB中,∠AOB=90°,半径OA=6,C是AB的中点,CD//OA,交AB于点D,则CD的长为(
)A.22−2 B.2 C.2 5.(3分)(2023·广东茂名·统考二模)如图,⊙O的半径为4,直径AB与直径CD垂直,P是AD上一点,连接PC,PB分别交AB,CD于E,F,若CE=25,则BF
A.4103 B.17 C.256.(3分)(2023·湖北武汉·统考模拟预测)如图,⊙O的半径为20,A是⊙O上一点,以OA为对角线作矩形OBAC,且OC=12,延长BC交⊙O于D,E两点,则CE−BD=(
)
A.185 B.245 C.2857.(3分)(2023·四川德阳·统考中考真题)已知一个正多边形的边心距与边长之比为32,则这个正多边形的边数是(
A.4 B.6 C.7 D.88.(3分)(2023·广东深圳·深圳市东湖中学校考模拟预测)如图,在边长为6的等边△ABC中,点E在边AC上自A向C运动,点F在边CB上自C向B运动,且运动速度相同,连接BE,AF交于点P,连接CP,在运动过程中,点P的运动路径长为(
)A.43π3 B.4π3 9.(3分)(2023·陕西西安·校考三模)如图,⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是()A.43 B.83 C.433 10.(3分)(2023·山西吕梁·模拟预测)如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B,点P为AM上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的个数有()①PB=PD;②BC的长为43π;③∠DBE=45°;④△BCF∼△PCB;⑤CF⋅CP
A.1个 B.2个 C.3个 D.4个二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2023·广东清远·统考二模)如图,⊙O的直径AB和弦CD垂直相交于点E,CD=42,CF⊥AD于点F,交AB于点G,且OG=1,则⊙O的半径长为
12.(3分)(2023·湖北咸宁·校考模拟预测)如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,⊙O与BC相切于D,与AC,BC的延长线分别相切于E、F,则⊙O的半径为
13.(3分)(2023·湖南株洲·校联考三模)如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则cos∠ACB的值是14.(3分)(2023·安徽合肥·合肥市庐阳中学校考模拟预测)如图,在矩形ABCD中,AB=6,BC=4,点E为BC的中点,AF=2,以EF为直径的半圆与DE交于点G,则GE的长为.
15.(3分)(2023·浙江温州·校联考一模)如图,半圆的直径AB=6,C为半圆上一点,连接AC,BC,D为BC上一点,连接OD,交BC于点E,连接AE,若四边形ACDE为平行四边形,则AE的长为.16.(3分)(2023·浙江杭州·杭州育才中学校考模拟预测)如图,AB为半圆的直径,C是半圆弧上任一点,正方形DEFG的一边DG在直线AB上,另一边DE过ΔABC的内切圆圆心I,且点E在半圆弧上,已知DE=8,则ΔABC的面积为.三.解答题(共7小题,满分52分)17.(6分)(2023·安徽·模拟预测)如图,半圆的直径AB=4,弦CD∥AB,连接(1)求证:△ADC≌△BCD;(2)当△ACD的面积最大时,求∠CAD的度数.18.(6分)(2023·广东深圳·广东省深圳市盐田区外国语学校校考模拟预测)如图,△ABC内接于⊙O,AB、CD是⊙O的直径,E是DA长线上一点,且(1)求证:CE是⊙O的切线;(2)若DE=35,tanB=119.(8分)(2023·湖北武汉·校联考模拟预测)如图,正方形ABCD内接于⊙O,E是BC的中点,连接AE,
(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.20.(8分)(2023·河北石家庄·石家庄市第四十二中学校考模拟预测)筒车是我国古代利用水力驱动的灌溉工具.如图,半径为3m的筒车⊙O按逆时针方向每分钟转56圈,筒车与水面分别交于点A、B、AB长为4m,筒车上均匀分布着若干个盛水筒(用点表示).若以某个盛水筒(点P
(1)设点D为盛水筒在运行中的最高点,请在图中画出线段CD,用其长度表示盛水筒到水面的最大距离.(不说理由),并求最大距离约为多少米(结果保留小数点后一位);(2)筒车每秒转°,∠OAB=°;(3)浮出水面2.6秒后,盛水筒(点P)距离水面多高?(参考数据:5≈2.2,cos21.(8分)(2023·广东佛山·校考一模)如图,在ΔABC中,AB=AC,以AB为直径的⊙O与BC交于点D,连接AD(1)用无刻度的直尺和圆规作出劣弧AD的中点E.(不写作法,保留作图痕迹),连接BE交AD于F点,并证明:AF×DF=BF×EF;(2)若⊙O的半径等于4,且⊙O与AC相切于A点,求劣弧AD的长度和阴影部分的面积(结果保留π).22.(8分)(2023·山东滨州·统考中考真题)如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC的外接圆相交于点D.
(1)求证:S△ABF(2)求证:AB:AC=BF:CF;(3)求证:AF(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)23.(8分)(2023·黑龙江哈尔滨·校考一模)△ABC内接⊙O,AD⊥BC于D,连接OA.
图1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024短期汽车租赁服务合同版B版
- 动物行为学知到智慧树章节测试课后答案2024年秋浙江农林大学
- 2025年度博物馆场地租赁及展览展示服务协议3篇
- 2024年数字政府白皮书一体化政务大数据分册
- 船舶制造塔吊租赁协议模板
- 钢结构图书馆钢架焊接施工合同
- 港口晒场施工协议
- 矿业安全监督员租赁协议
- 酒吧休闲鱼池租赁合同
- 食品加工设备维修机井合同
- 初中音乐欣赏课型互动教学策略的构建及实践
- 《新媒体运营》高职新媒体运营全套教学课件
- 大学生创新创业教程 课件全套 王晓明 第1-11章 创新与创新能力 -中国国际大学生创新大赛与“挑战杯”大学生创业计划竞赛
- 2024年兰州大学专业课《金融学》科目期末试卷B(有答案)
- 初中物理宝典
- 人工智能基础与应用-课程标准
- 绿化养护工作日记录表
- 耳尖放血的护理
- 人工智能趣味科普系列
- 中医五脏课件
- 安谷铁龙煤矿整合技改施工组织设计样本
评论
0/150
提交评论