琼台师范学院《人工智能》2022-2023学年第一学期期末试卷_第1页
琼台师范学院《人工智能》2022-2023学年第一学期期末试卷_第2页
琼台师范学院《人工智能》2022-2023学年第一学期期末试卷_第3页
琼台师范学院《人工智能》2022-2023学年第一学期期末试卷_第4页
琼台师范学院《人工智能》2022-2023学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页琼台师范学院《人工智能》

2022-2023学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在人工智能的农业应用中,精准农业可以通过传感器和数据分析实现对农作物的精细化管理。假设要根据土壤湿度和气象数据决定灌溉量,以下哪个技术环节是最关键的?()A.数据的采集和传输B.数据分析和建模C.灌溉设备的控制D.传感器的校准2、人工智能中的元学习技术旨在让模型能够快速适应新的任务和数据分布。假设要开发一个能够在不同领域的小样本学习任务中表现良好的元学习模型,以下哪种元学习方法在泛化能力和学习效率方面具有更大的潜力?()A.基于模型的元学习B.基于优化的元学习C.基于度量的元学习D.以上方法结合使用3、在人工智能的模型训练中,超参数的调整是一个关键步骤。假设正在训练一个用于文本生成的循环神经网络(RNN),以下关于超参数选择的方法,哪一项是不太可取的?()A.基于经验和直觉,随机选择一组超参数进行试验B.使用网格搜索或随机搜索等方法,系统地尝试不同的超参数组合C.借鉴已有的相关研究和实践中常用的超参数设置D.利用自动超参数调整工具,如Hyperopt,根据验证集的性能自动寻找最优超参数4、在人工智能的智能推荐系统中,冷启动问题是指在新用户或新物品加入时缺乏足够的历史数据进行准确推荐。假设要解决一个新上线电商平台的冷启动问题,以下哪种策略最为有效?()A.基于内容的推荐B.基于热门商品的推荐C.基于用户社交关系的推荐D.以上策略结合使用5、人工智能中的深度学习模型通常需要大量的训练数据。假设要训练一个用于图像分类的卷积神经网络(CNN),但可用的标注数据有限。以下哪种方法可能有助于提高模型的性能?()A.使用数据增强技术,如翻转、旋转、缩放图像,增加数据的多样性B.减少模型的层数和参数数量,以降低对数据的需求C.直接使用未标注的数据进行训练D.放弃深度学习模型,选择传统的机器学习算法6、人工智能中的智能代理能够自主地感知环境、做出决策并执行动作。假设一个智能代理在游戏中与其他玩家交互。以下关于智能代理的描述,哪一项是错误的?()A.智能代理可以通过学习和经验积累来改进自己的策略B.它能够根据环境的变化实时调整自己的行为,以达到目标C.智能代理的决策完全基于预设的规则,无法从环境中学习和适应D.多个智能代理之间可以通过协作或竞争来实现更复杂的任务7、人工智能中的联邦学习是一种新兴的技术,旨在保护数据隐私的前提下进行模型训练。假设多个机构想要联合训练一个人工智能模型,但又不希望共享各自的数据。那么,联邦学习是如何实现这一目标的?()A.将所有数据集中到一个中心服务器进行训练B.每个机构只上传模型参数,在云端进行聚合C.通过加密技术直接共享原始数据进行训练D.不需要数据交互,各自独立训练模型8、强化学习是人工智能中的一个重要领域,常用于训练智能体在环境中做出最优决策。假设一个机器人需要在一个充满障碍物的房间里找到通往目标位置的路径,同时避免碰撞。在这种情况下,以下关于强化学习的说法,哪一项是正确的?()A.智能体通过随机尝试不同的动作来学习最优策略B.奖励函数的设计对学习效果没有太大影响C.强化学习不需要考虑环境的动态变化D.一旦训练完成,智能体在新的环境中无需重新学习就能表现良好9、在人工智能的情感分析任务中,需要判断文本所表达的情感倾向,如积极、消极或中性。假设要分析社交媒体上用户对某一产品的评价情感,以下哪种方法在处理大量非结构化文本数据时效果较好?()A.基于词典的方法B.基于机器学习的分类方法C.基于深度学习的神经网络方法D.人工阅读和判断10、在人工智能的医疗影像诊断中,深度学习模型可以辅助医生发现病变。假设我们要利用深度学习模型诊断肺部CT影像中的结节,以下关于模型训练的说法,哪一项是正确的?()A.可以使用少量标注数据获得准确的诊断结果B.模型的泛化能力对于不同医院的数据不重要C.数据增强技术可以提高模型的鲁棒性D.不需要对模型进行验证和评估11、在一个利用人工智能进行自动化文本分类的项目中,例如将新闻文章分类为不同的主题,为了提高分类的准确性,以下哪种措施可能是有效的?()A.增加训练数据的多样性B.选择更复杂的分类算法C.对文本进行更精细的预处理D.以上都是12、人工智能在医疗领域的应用日益广泛,假设一家医院正在考虑引入人工智能辅助诊断系统。该系统通过分析大量的医疗影像和病历数据来提供诊断建议。以下关于人工智能在医疗诊断中应用的描述,哪一项是不正确的?()A.人工智能可以快速处理和分析海量的医疗数据,提高诊断效率B.它能够发现人类医生可能忽略的细微模式和特征,提高诊断的准确性C.人工智能诊断系统完全可以替代人类医生,独立做出最终的诊断决策D.可以为医生提供参考和补充信息,帮助医生做出更全面和准确的诊断13、在人工智能的发展中,模型压缩和优化技术有助于在资源受限的设备上部署模型。假设要将一个大型的人工智能模型部署到移动设备上,以下关于模型压缩和优化的描述,哪一项是不正确的?()A.可以采用剪枝、量化等方法减少模型的参数数量和计算量B.模型压缩可能会导致一定程度的性能损失,但可以通过优化算法来弥补C.模型压缩和优化只适用于深度学习模型,对传统机器学习模型无效D.需要在模型性能和资源消耗之间进行平衡,找到最优的解决方案14、假设要开发一个能够在复杂环境中自主导航的智能机器人,例如在仓库中搬运货物,以下哪个模块对于机器人的决策和行动至关重要?()A.环境感知模块B.路径规划模块C.运动控制模块D.以上都是15、在人工智能的应用中,自动驾驶是一个具有挑战性的领域。假设一辆自动驾驶汽车需要在复杂的交通环境中做出安全、高效的驾驶决策。那么,以下关于自动驾驶中的人工智能技术,哪一项是不准确的?()A.需要依靠多种传感器获取环境信息,如摄像头、激光雷达等B.基于深度学习的目标检测算法可以准确识别道路上的行人和车辆C.自动驾驶系统一旦训练完成,就不需要再进行更新和改进D.决策算法需要考虑交通规则、道德伦理等多方面因素16、在人工智能的图像增强技术中,目的是提高图像的质量和可读性。假设我们要对一张低光照条件下拍摄的照片进行增强,以下关于图像增强的方法,哪一项是不准确的?()A.直方图均衡化B.锐化滤波C.中值滤波D.图像增强不会引入任何噪声17、在人工智能的文本分类任务中,假设要对大量的新闻文章进行分类,如政治、经济、体育等。以下关于特征提取的方法,哪一项是最常用的?()A.使用词袋模型,将文本表示为词的频率向量B.直接将原始文本作为输入,不进行任何特征提取C.运用句法分析,提取句子的结构特征D.仅考虑文本的标题,忽略正文内容18、在人工智能的音频处理中,语音增强是一项重要任务。假设要提高在嘈杂环境中录制的语音的清晰度,以下关于语音增强技术的描述,正确的是:()A.简单的滤波方法就能够完全去除噪声,恢复清晰的语音B.语音增强技术只对特定类型的噪声有效,对复杂的噪声环境无能为力C.结合深度学习算法和声学模型,可以更有效地从噪声中提取有用的语音信息D.语音增强的效果不受原始语音质量和噪声强度的影响19、在强化学习中,“Q-learning”算法通过估计什么来进行决策?()A.状态价值B.动作价值C.策略D.奖励20、人工智能中的情感计算旨在让计算机理解和处理人类的情感。假设我们要开发一个能够根据用户的语音和文本判断其情感状态的系统,以下关于情感计算的描述,哪一项是不正确的?()A.可以通过分析语音的语调、语速等特征来判断情感B.文本情感分析通常依赖于情感词典和机器学习算法C.情感计算的准确性完全取决于数据的质量和规模D.多模态情感分析结合了语音、文本、面部表情等多种信息源二、简答题(本大题共5个小题,共25分)1、(本题5分)说明卷积神经网络在图像识别中的应用。2、(本题5分)解释人工智能在推动社会文明进步和人类发展中的价值。3、(本题5分)说明人类智能的特点和优势。4、(本题5分)说明知识图谱的构建和应用。5、(本题5分)简述人工智能在智能培训效果评估中的应用。三、案例分析题(本大题共5个小题,共25分)1、(本题5分)考察一个基于人工智能的智能音乐作品消费者反馈收集系统,讨论其如何收集消费者的反馈意见。2、(本题5分)分析一个利用人工智能进行智能艺术作品营销渠道分析系统,探讨其如何分析有效的营销渠道。3、(本题5分)研究一个基于人工智能的天气预报系统,评估其预测精度和改进空间。4、(本题5分)分析一个基于人工智能的民间艺术传承人口述历史整理系统,评估其整理效果和历史价值。5、(本题5分)研究一个使用人工智能的智能戏曲表演训练系统,分析其如何辅助演员提高表演水平。四、操作题(本大题共3个小题,共30分)1、(本题10分)借助Scikit-learn库中的聚类算法,如层次聚类或密度聚类,对一组客户的消费

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论