




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Lesson22Moore’slaw:theFutureofSimicroelectronics
(第二十二课摩尔定律:硅微电子学的未来)
Vocabulary(词汇)ImportantSentences(重点句)QuestionsandAnswers(问答)Problems(问题)
SoonafterBardeen,Brattain,andShockleyinventedasolid-statedevicein1947toreplaceelectronvacuumtubes,themicroelectronicsindustryandarevolutionstarted.Sinceitsbirth,theindustryhasexperiencedfourdecadesofunprecedentedexplosivegrowthdrivenbytwofactors:NoyceandKilbyinventingtheplanarintegratedcircuitandtheadvantageouscharacteristicsthatresultfromscaling(shrinking)solid-statedevices.Scalingsolid-statedeviceshasthepeculiarpropertyofimprovingcost,performance,andpower,whichhashistoricallygivenanycompanywiththelatesttechnologyalargecompetitiveadvantageinthemarket.Asaresult,themicroelectronicsindustryhasdriventransistorfeaturesizescalingfrom10μmto30nmduringthepast40years.Duringmostofthistime,scalingsimplyconsistedofreducingthefeaturesize.However,duringcertainperiods,thereweremajorchangesaswiththeindustrymovefromSibipolartop-channelMetal-OxideSemiconductor(MOS),thenton-channelMOS,andfinallytoComplementaryMOS(CMOS)planartransistorsinthe1980s,whichhasremainedthedominatetechnologyforthepasttwodecades.ThebigchallengegoingforwardisthattheendofplanarCMOStransistorscalingisnearasthetransistorsizeapproachestensofnanometers.Howtheindustryevolvesafterthislimitisreachedisunclear.
Toaddressthesechallenges,presentdayresearchisfocusedonidentifyingnewmaterialsanddevicesthatcanaugmentand/orpotentiallyreplacetheaging50-year-oldSitransistor.Twoapproachesunderinvestigationare:(1)nonclassicalCMOS,whichconsistsofnewchannelmaterialsand/ormultigatefullydepleteddevicestructures;and(2)alternativestoCMOS,suchasspintronics,singleelectrondevices,andmolecularcomputingWhilesomeofthesenon-Siresearchareasareimportantandwillbesuccessfulinnewapplicationsandmarkets,itseemsunlikelyanyofthenon-SioptionscanreplacetheSitransistorforthe$300billionmicroelectronicsindustryintheforeseeablefuture(perhapsaslongas30years).
ThisreviewaimstoexplainthefutureofSimicroelectronics,keyissuesattheendoftheSiroadmap,andthetimeframeforpossiblenon-Sitechnologyreplacements.WefirstdiscussthestateofMoore’slawandconventionalplanarSitransistorscalinglimits.Next,wecovertheissuesattheendoftheSiroadmapbasedoncurrenttechnologytrends.Weend,perhapsfoolhardily,withanassessmentofnonclassicalCMOSandalternativestoCMOS.Thekeytakeawaymessagesarethatsimplescalinghasended,thereisenormouslifeleftinplanarSiCMOStechnology,andnothingisonthehorizontoreplaceitformainstreamlogicapplications.[1]
1StatusofMoore’slaw
Moore’slawistheempiricalobservationthatcomponentdensityandperformanceofintegratedcircuitsdoubleseveryyear,whichwasthenrevisedtodoublingeverytwoyears.GuidedbythescalingrulessetbyDennardin1974,smartoptimization,timelyintroductionofnewprocessingtechniques,devicestructures,andmaterials(inmanyareasofthedeviceexceptthechannel),Moore’slawhascontinuedunabatedfor40years.Drivenbytremendousadvancesinlithography,the65nmlogictechnologynodefeaturing30nmtransistorsiscurrentlyinhighvolumeproduction.Furthermore,45nmand32nmtechnologieswithprocesstargetsdefinedtomaintainMoore’slawarecurrentlyunderdevelopmentatseveralcompanies.Withsuchsmallfeaturesizesinhighvolumeproductionandunderdevelopment,SiCMOStechnologiesarenowleadingthefieldofnanotechnologyandwillcontinuetodoso.Nanotechnologyisdefined,accordingtotheNationalScienceandEngineeringTechnologyCouncil(NSET),as:
Researchandtechnologydevelopmentattheatomic,molecular,ormacromolecularlevels,inthelengthscaleofapproximately1-100nmrange,toprovideafundamentalunderstandingofphenomenaandmaterialsatthenanoscaleandtocreateandusestructures,devices,andsystemsthathavenovelpropertiesandfunctionsbecauseoftheirsmalland/orintermediatesize.Thenovelanddifferentiatingpropertiesandfunctionsaredevelopedatacriticallengthscaleofmattertypicallyunder100nm.
SiMOSFETsenteredthenanometereraaround2000,asseeninFig.1,thatshowstechnologynodeandtransistorfeaturesizeversusyearforthesemiconductorindustry.Forthe0.13μmtechnologynode,theindustryincorporated70nmgatelengthtransistorsonaverage.Whatisinterestingtonoteisthattraditionaltop-downmicroelectronicshavenotonlybecomenanoelectronicsbutthedevicedimensionsarenowcomparabletothosebeingexploredinthenewfieldofbottom-upnanotechnologyandmolecularelectronics!Fig.1Logictechnologynodeandtransistorgatelengthversuscalendar
year.NotemainstreamSitechnologyisnanotechnology
Thekeydriverbehindthesetrendsiseconomics,aspointedoutbyMoorein1965.AccordingtoMoore,integratedcircuitsandscalingare“thecheapwaytodoelectronics”.EvenwithlargeincreasesinlithographytoolcosttofabricatenanoscaleCMOStransistors(forexample,thecostoflithographysteppersincreasedfrom$10000to$35million,asshowninFig.2),whichhasleadtomodernfactoriescosting$2-3billion,thecostpertransistorhasdecreasedbysevenordersofmagnitudeduringthelast40years(Fig.2)andislikelytocontinuetodecreaseforanotherdecade.However,CMOStransistorscalingmustinevitablyslowdownandfinallyhalt,atleastinthetraditionalsense,asthelithographyscaleapproachesatomicdimensions.Fig.2Transistorcostandlithographictoolcostversusyears.
Notetransistorcosthasdecreasedsevenordersofmagnitudeevenwhiletoolcosthasincreased.2CMOSLimits
WhenstartingadiscussionofCMOSlimits,itisfirstimportanttopointoutthatwhenthelimitsarehit,thiswillnotbetheendofintegratedcircuitsorMoore’slaw.Allitmeansisthattherateofimprovementwillchangeonceagain(ashappenedin1975).ImprovementswillinsteadcomefromareasotherthanscalingandSiCMOStechnologywillcontinueformanydecadesbeforeacrediblealternativearises.Forexample,evenifdevicedensityslows,costpertransistorwillcontinuetobereducedthroughimprovedtoolproductivity,cycletimereduction,defectelimination,andpossibly,thoughunlikely,anotherwafersizeconversionbytheindustry,thusfurtherextendingMoore’slaw.Nextitisimportanttoclassifythelimitsaspracticalortheoreticalandintothecategoriesoflithography,transistor,andwiring.Inthiswork,wewillfocusontransistorlimitssincethisappearstobethemostseriousissue.Atpresent,lithographywillnotbethelimiter.Asatestamentastohowfarengineerscanpushmainstreamtechnology,conventionalopticallithographyenhancedwithhighnumericalaperture,reticalenhancementtechniques,anddoubleexposurecanpatternthe22nmnode,puttingintoquestiontheroleofnonopticallithographytechniquessuchasExtremeUltraViolet(EUV)lithographyWiringlimits,thoughserious,canbeaddressedbyarchitectureandaddingmoremetallayers.3PlanarCMOSTransistorLimits
Transistorscalinglimitsarisefrompracticallimitsrelatedtoleakagecurrentatsmallgatelengths.Theproblematsmallgatelengthsisthatthedrainvoltagereducesthebarrierheightatthesource,therebycausingalowsource-to-channelbarrierheightevenwiththegatevoltageoff,whichleadstoundesirable,largeoff-stateleakage.Thisphenomenonisreferredtoasdrain-inducedbarrierloweringand/ordegradedShortChannelEffect(SCE).ForevidencethatCMOSplanartransistorsareapproachingtheirminimumpracticalsize,oneonlyneedlookattheoff-stateleakagetrendsfortheindustry.CMOSwasinitiallypromisedasatechnologythatdissipatednegligiblepowerinthestandbystate.Inpresentdayhigh-performancelogictechnologiesdesignedformicroprocessors,theleakagepowerofCMOStransistorsisapproximately20-30W(outofatotalpowerbudgetof100W).Thismagnitudeofleakageisalreadyatthepracticallimitsinceitincreasespackagingcost(becauseofcooling)and,evenmoreimportantly,energycost(bothintermsofutilitybillsandtheinfrastructuretogetenergyintocorporateservercomputerrooms).Topreventfurtherincreasesinleakage,therateofgatelengthscalinghasalreadyslowedintherecent90nmand65nmtechnologynodes.ThereisnohardlimitontheminimumsizeofaplanarCMOSdevice,butpracticalconsiderationsonleakagelimitthephysicalgatelengthto20nm.
Withtheindustryalreadyclosetothelimitsofplanartransistors,progresscanstillbeachievedusingmethodsotherthanscaling.OnepossibleoptionisyetagaintomovetoalternatedevicestructureswhilestillusingaSichannelsuchasmultigatefullydepleteddevices(sometimescallednonclassicalCMOS).Withoutquestion,thesenonclassicaldevicesimproveSCE(reduceleakage)becauseofimprovedelectrostaticsfromthemultigatesandultrathinbodies.Fig.3showsasummaryoffullydepleteddevicesinvestigatedbytheindustryduringthepasttwodecades.AllofthesedevicesarebasedonathinlayerofSi-On-Insulator(SOI).However,thispathhasnotbeenchosenbytheindustryatpresentandkeepsgettingpushedouttofuturetechnologynodesbecauseofthreedifficultandunsolvedissues:(1)athinbodyleadstohigherexternalresistance,whichwillbeshowntobeasignificantissueinstate-of-the-artnanoscaleMOSFETSwheretheexternalresistanceisbecomingcomparableinmagnitudetothechannelresistance;(2)significantuniformity,processcomplexity,andcostissuesassociatedwithfabricatingmultigatedevices;and(3)difficultyinengineeringthebandstructureinfullydepleteddevicesusingstrain(tocreatealowconductivitymass),whichhasalreadybecomemainstreaminplanarCMOStoincreasecarriermobility(transistorspeed).
Insteadofmovingtoanewdevicestructure,thepathchosenbytheindustryistoimprovetransistorperformancewithoutanyfurthershrinkingofthetransistorgatelengthbyintroducinglatticestrainintotheSichannel.ThisapproachsignificantlyaltersthebandstructureandaddressesSitransportdeficienciescomparedwithotherhigh-mobility,III-Vsemiconductors.
Forexample,byalteringthepositionofSiatomsintheface-centeredcubicunitcell,theholeconductivityeffectivemasscanbereducedbyafactorof1/4,whichimprovesmobilityandresultsina100-200%increaseintransistorcurrentanddramaticperformancegains.Asaresult,strainedSiisbeingimplementedinnearlyall90nm,65nm,and45nmtechnologynodes.Theresultshavebeensosuccessfulthatitwillbedifficultforalternativehigh-mobilitychanneltechnologiestocompetewithstrainedSi.TheadoptionofstrainedSiwhilekeepingthegatelengthconstantstillsupportsthehistoricaltransistordensityincreaseandcostreduction(atleastinitially)sincethegatedimensionisonlyafractionofthetransistorpitch(i.e.transistordensityisincreasedbyreducingthespacebetweentransistorsandnotthegatelength).Maintainingaconstantgatelength(whilescalingthespaceandpitch)isviableforafewtechnologynodes,butwilleventuallyleadtoscalingbeinglimitedbyparasiticresistanceandcapacitancebecauseofthespacebetweentransistorsbecomingtoosmall.Fig.3EmergingalternativefullydepletedCMOSstructuresforcontinuescaling;(a)one-;(b,c)two-,and(d)three-gatefutlydepleteddevices.(Part(d)courtesyofR.Chau.intel.)4RealLimiterstoScaling:ParasiticResistanceandCapacitance
WiththeendofplanarSitransistorscalinginsight,itisnowpossibletogiveaninsightintothereallimitsontheSiroadmap,whicharetheparasiticresistanceandcapacitancegenerallyassumednegligiblebyscalingtheories.Thiswasagoodassumptionforthepast40yearsbutwillnolongerbethecaseduringthenextdecade.Fig.4showsthevariousparasiticresistancesandcapacitancespresentinaplanarMOSFET.Thesuddenriseinparasiticsattheendoftheroadmapcanbequalitativelyunderstoodasresultingfromthespacebetweenneighboringdevicesdecreasingtotensofnanometerssincethesource/drainandcontactsizeneedtobeaggressivelyscaledtosupporttheincreaseddensityintheabsenceofgatelengthscaling.Fig.4depictsthetypicaldesignrulesofplanarSitransistorsforthe32nmtechnologynode.Itcanbeseenthatthesource/draincontactandthegateareonlytensofnanometersapart,whichisundesirableintermsofparasiticresistance.Suchsmallcontactsizeleadstohighercontactresistanceandcontact-to-gatecapacitance.Fig.4PlanarCMOSschematicshowingthevariousparasiticresistancesandcapacltances(drawntoscaleforthe32nmprocesstechnologynode,,transistorpitch=100nm)
Historically,theparasiticsdidnotmattersincetheyweremuchsmallerthanthechannelresistanceandcapacitance.However,theintrinsicchannelcapacitanceandresistancehasdecreaseddramaticallyduringthepastfourdecades.Tothefirstorder,channelresistanceandcapacitancearebothproportionaltothegatedimension,whichhasdecreased1000timessincethestartofMoore’slaw.Becauseofsuchdramaticreductionsinchannelresistance,theparasiticresistanceandcapacitancearenowbecomingcomparableandareoncoursetobecomingevenlargerthantheintrinsicdeviceresistanceandcapacitance(Figs.5and6).Figs.5and6wereobtainedusingindustrydesignrulesforthe90nmand65nmtechnologynodes,0.7timesscalingforfuturenodes,andequationsfoundin
references.Slotortrenchcontactsareassumedforthe45nmtechnologynodeandbeyondtohelpminimizecontactresistance.
Theparasiticscalingtrendshighlightaninterestingareawherefuturetransistorresearchneedstobefocusedandimportantmetricsforfuturedevices.Muchofpresentdaytransistorresearchisfocusedonnewchannelmaterialsanddevicesforveryhighmobility.Thescalingtrendssuggestthereallimiterisparasiticsandthatthisiswherethefocusneedstobe.Oncethechannelresistancebecomessmallerthantheexternalresistance,reducingthechannelresistancefurther,eventozero,haslittleperformancebenefit(thesameistrueforcapacitance).Furthermore,andperhapsmoreimportantly,ithighlightsthatnewdevicestructuresneedtobejudgedonparasiticresistanceandcapacitancemorethanonchanneltransportproperties.Todate,parasiticsaremuchworseformostnewdeviceoptionsandrarelyisthistakenintoaccount.Take,forexample,therecentlogiccircuitsdemonstratedincarbonnanotubetransistors.AlthoughthechannelmobilityisseveralordersofmagnitudehigherthanSi,thefabricatedinverters33-35are106-1010timesslowerthanstate-ofthe-artCMOSbecauseofparasitics!Also,infullydepletedmultigatedevicesfabricatedonSifins,theparasiticresistanceisworsethanintheplanarCMOStransistor23,24.Forbothfullydepletedandcarbonnanotubetransistors,thehighparasiticresistanceislikelytobeafundamentalproblembecauseofthesmallsource/drainvolume(thesource/draincontactsconnecttoaSibulk‘box’thatisjust5-10nmthickinthecaseoffullydepleteddevices;incarbonnanotubedevicesthisisevenless,withthethicknessontheorderofoneatomiclayer).Fig.5EstimatedtotalplanarCMOSparasiticandchannelresistanceversustechnologynode.Noteparesiticresistenceisoncoursetobecomelangerthantheintrinsicchannelresistance.Fig.6TotalplanarCMOSparasiticandintrinsicchannelcapacitanceversustechnologynode.Noteparasiticcapacitanceisoncoursetobecomelargerthanintrinsicchannelcapacitance.5ProspectstoReplaceSielectronics
WithSiCMOSscalinglimitsinsight,theobviousquestionsare“WhatnanotechnologyisonthehorizontoreplaceplanarSiCMOStransistorsandinwhattimeframecouldthishappen?”Thoughthesearedifficultandperhapsfoolhardyquestionstotryandanswer,itisimportanttoattempttodososincethisaffectsa$300billionworldwideindustryandthecareersofmostengineers.
Addressingthetimeframequestionfirst,howquicklytheindustrycanadoptaradicallydifferentdevicetypedependsonhowmanyresearchanddevelopmentlevelsitimpacts.Levelsaredefinedbydevelopmenteffortsandorganizationsthatarecurrentlypresentinthemicroelectronicsindustrysuchasmaterials,devicedesign,circuitdesign,computerarchitecture,andsoftware.Asaruleofthumb,pastchangesthataffectonelevelgenerallytakeapproximatelyfiveormoreyearswiththeexceptionofsoftware,whichtakesevenlonger.ExamplesofrecentchangesthatmostlyaffectedonelevelandtookfiveyearsormorearebipolartoplanarCMOStransistors,strainedSi,high-kgatedielectrics,low-kbackenddielectrics,andcomputerarchitecturechangessuchashyperthreadingandthemovefromsinglethreadperformancetodualcoremicroprocessors.Manyofthenon-Sidevicetypesaffectmultipleresearchanddevelopmentlevelswithmostradicalnewdevicesaffectingalllevels.Changesthataffectmultiplelevelscaneasilytakefiveyearsperlevelandareverydifficult.Forexample,anewdevicebasedonsingle-electrontransportorspintronicswilllikelyrequireanewproductarchitectureandsoftwaretotakeadvantageoftheiruniquedeviceattributes(highdensityandlowpower)andlimitations(smalltransistordrivecurrentandinabilitytodrivethesixtotenlayersofCuinterconnectsusedtowirethe100sofmillionstobillionoftransistorsinmodernchips).Thus,aradicallynewdevicetypecouldeasilytakeover15-20yearstocoordinatethechangesamongallthelevelsoncetheindustryhasdecidedtopursuethisapproach.Sincetheindustryisstillmorethanadecadeawayfrommakingadecisiononwhichnewdevicetypetopursue,itputsthetimeframeforaradicalnewnanotechnologydeviceformainstreamlogicapplicationsmorethan30yearsaway.Whentheindustrytalksaboutradicallynewdevicetypesthatwill“revolutionizecomputing”,thistypeoftimeperspectiveisoftenmissed.Fig.7attemptstoputinperspectivethetimeframerequiredtoimplementsomeofthenewradicaldevicetypesintoproduction.
Thesecondpartofthequestioniswhatnon-SitechnologycanpotentiallyreplacetheSiplanardevice.Thisisperhapsanevenmoredifficultquestiontoanswerbutequallyimportantsinceresourcesforasociety(bothpeopleandcapital)needtobefocusedonthebestareasforreturn.Evenwiththesecaveats,someconclusionscanbedrawn.
First,iftheindustryisgoingtospendseveraldecadesatadevelopmentcostlikelytobegreaterthan$100billiontogetatechnologytoalevelcompetitivewiththealready>$1trillioninvestedinSitechnologyduringthepast40years,thenewtechnologyisgoingtohavetoofferatleastanorderofmagnitudeimprovementovertheplanarSiCMOStransistors.Fornoncharge-baseddevicesrelyingonradicallydifferentcomputingmodels,atthistimeitisdifficulttopredictthepotentialperformanceadvantages.However,fornon-Sicharge-baseddevices(Ge,III-V,orcarbonnanotubechannels),whichareviewedasthefirstpossiblereplacementstotheplanarSitransistor,itisnowbecomingpossibletoestimatethepotentialimprovementoverSi.Toassessthepotentialperformance,thefirstordermetricoftenusedisthemagnitudeofthechannelmobilityinthenewdevicetypescomparedwiththesurfacechannelSielectronandholemobility.Thoughcommonlyusedthisbenchmarkis,unfortunately,toosimplisticandinmanycasesleadstowrongconclusions.First,highmobilitycanresultfromeitherlowconductivitymassorscattering.Onlyreducedconductivitymass(asopposedtoreducedscattering)isimportantforballistic-limitedtransport,whichdominatesattheendoftheSiroadmap.Second,andequallyimportant,isthedensity-of-statesforholesandelectronsinthechannelmaterialsincethisaffectstheamountofinversionchargeandthedevicedrivecurrent(bothamountandvelocityofchargedeterminesthecurrent).Mostoftheveryhighmobilitymaterials(forexamplecarbonnanotubes)haveverylowdensity-of-states(severalordersofmagnitudelowerthanSi)makingitdifficulttoachievehighdrivecurrents.Infact,eveninthestrainedSitechnologycurrentlyinproduction,strainisusedtocreatebothalowconductivitymassinthechanneldirectionandahighdensity-of-statesbycreatingaverylargeconductivitymassintheplaneofthetransistorperpendiculartothechanneldirection.Includingtheseconsiderations,isnotclearifanyofthenewchannelmaterialsoffersignificantimprovementoverSi.Furthermore,basedonthepreviousdiscussionofparasiticresistance,fewnewchannelmaterialscancompetesinceagreatdealofdevelopmenthasgoneintoreducingexternalresistanceforSiCMOSdevicesbyusingmillisecondannealstocreateabovesolidsolubilitydopingandincorporatingnickelsilicide(NiSi)andSiGeinthesourceanddrain.6Conclusion
Basedoncurrenttechnologytrends,thescalinglimitstoplanarCMOSareclear.ThoughsimplescalingofplanarCMOShasended,thetechnologywillcontinueapproximatelyonMoore’shistoricalperformancetrendforanotherfewtechnologynodesmakingplanarCMOStheleaderincommercialnanotechnology.ThereallimitstoplanarSiCMOS(andmostnewdevicetypes)areparasiticresistanceandcapacitance.Thus,alternatedevicetypesshouldbebenchmarkedonparasiticsandnotjustchanneltransportproperties.Furthermore,radicallynewdevicetypeswillrequirechangesalongmanyresearchanddevelopmentlevelsfrommaterialstosoftware.Thetimeframetoimplementaradicallynewdeviceisestimatedtobe30years.ThusSiCMOSwillbethedominantformofnanotechnologyfortheforeseeablefuture.Finally,wemustrememberMoore’slawisnotaphysicallawbutalawabouteconomics.Consumerproductsandemergingmarketshavebecomethedominateendmarketsforsemiconductorsandwillcontinuetobesoforthenextdecade(versusthemilitaryinthe1960s-70s).Akeyattributeinthesemarketsisprice.Sitechnologyisoncourseinthenextdecadetoofferabilliontransistorchipsfor$1,whichwillbeaverydifficulttechnologytodisplace.[2]
1. vacaumn.真空;〈口〉真空吸尘器;空间;空虚;空白vt.用真空吸尘器清扫(某物)。
2. unprecedentedadj.前所未有的;空前的;没有先例的。
3. planaradj.平面的,平坦的。
4. nanometern.纳米。
5. evolvevt.&vi.演变;进化vi.(动植物等)进化;进化形成。Vocabulary
6. augmentedadj.增音的,扩张的。
7. depletevt.使大大的减少;使空虚vi.耗尽;使枯竭。
8. spintronicsn.自旋电子学。
9. empiricallyadv.以经验为主地。
10. reticlen.十字线,刻线。
11. parasiticadj.寄生的,寄生虫的;由寄生虫引起的adv.寄生地;由寄生虫引起地。
12. ruleofthumb凭感觉的方法;单凭经验的方法。
13. takeawayn.外卖餐馆,外卖食品。
14. caveatn.<律>中止诉讼程序的申请;警告,附加说明,告诫。
15. ballisticadj.发射的,弹道(学)的,衡量冲击强度的;大怒,暴跳如雷。
[1]Thekeytakeawaymessagesarethatsimplescalinghasended,thereisenormouslifeleftinplanarSiCMOStechnology,andnothingisonthehorizontoreplaceitformainstreamlogicapplications.
关键的信息是,简单的比例缩放已经结束了,但是平面硅CMOS工艺还有巨大的生命力。我们还不能肯定是否有能代替它作为主流逻辑应用的其他工艺。onthehorizon,在地平线上,几乎肯定会很快发生的。ImportantSentences
[2]Consumerproductsandemergingmarketshavebecomethedominateforsemiconductorsandwillcontinuetobesoforthenextdecade(versusthemilitaryinthe1960s-70s).Akeyattributeinthesemarketsisprice.Sitechnologyisinthenextdecadetoofferabilliontransistorchipsfor$1, whichwillbeaverydifficulttechnologytodisplace.
消费产品及其未来的市场已经成为半导体的主要终端市
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年房屋买卖合同的履行与违约行为解析
- 广州南方学院《室内装饰材料与工程预算》2023-2024学年第一学期期末试卷
- 2025年湖南省邵阳市武冈三中学初三下学期第二次联考(5月)英语试题含答案
- 2024-2025学年河南濮阳建业国际学校高三下学期期末模拟语文试题含解析
- 第8单元 可能性2024-2025学年四年级上册数学教案(北师大版)
- 九江职业技术学院《三维动画创作(I)》2023-2024学年第一学期期末试卷
- 中南林业科技大学涉外学院《艺术素养拓展(音乐一)》2023-2024学年第一学期期末试卷
- 潍坊工商职业学院《运动处方》2023-2024学年第二学期期末试卷
- 2024-2025学年安徽省和县初三(上)期末教学统一检测试题化学试题试卷含解析
- 江苏第二师范学院《产品交互设计》2023-2024学年第二学期期末试卷
- 课间操考核评比方案含打分标准打分表
- 2023版药品生产质量管理规范 附录1 无菌药品
- 天星乡养羊项目绩效评价报告
- GB/T 39489-2020全尾砂膏体充填技术规范
- 《民法》全册精讲课件
- 厂内机动车辆课件
- 四川方言词典(教你说一口地道的四川话)
- 企业标准编写模板
- 《新媒体运营》考试参考题库(含答案)
- 学校食堂餐厨具操作规程
- DB32T 3916-2020 建筑地基基础检测规程
评论
0/150
提交评论