版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省曲靖市麒麟区五中高三3月份第一次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如下的程序框图,则输出的是()A. B.C. D.2.已知,则的取值范围是()A.[0,1] B. C.[1,2] D.[0,2]3.已知集合,集合,则A. B.或C. D.4.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.5.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积()A. B. C. D.6.已知函数,则()A.2 B.3 C.4 D.57.执行如图所示的程序框图,输出的结果为()A. B.4 C. D.8.执行如图所示的程序框图,若输入的,则输出的()A.9 B.31 C.15 D.639.函数的大致图像为()A. B.C. D.10.不等式组表示的平面区域为,则()A., B.,C., D.,11.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.1605π3 B.64212.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.12种 B.24种 C.36种 D.48种二、填空题:本题共4小题,每小题5分,共20分。13.设满足约束条件且的最小值为7,则=_________.14.某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为________.15.曲线在点(1,1)处的切线与轴及直线=所围成的三角形面积为,则实数=____。16.如图,在三棱锥中,平面,,已知,,则当最大时,三棱锥的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三棱柱中,,是的中点,,.(1)求证:;(2)若侧面为正方形,求直线与平面所成角的正弦值.18.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.(1)求曲线的方程;(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.19.(12分)已知函数.(1)求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.20.(12分)如图,在正四棱锥中,底面正方形的对角线交于点且(1)求直线与平面所成角的正弦值;(2)求锐二面角的大小.21.(12分)已知函数,.(1)证明:函数的极小值点为1;(2)若函数在有两个零点,证明:.22.(10分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?是否合格性别不合格合格总计男生女生总计(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.2、D【解析】
设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【详解】设,则,,∴()2•2||22=4,所以可得:,配方可得,所以,又则[0,2].故选:D.【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3、C【解析】
由可得,解得或,所以或,又,所以,故选C.4、B【解析】
根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.5、C【解析】
由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.【详解】由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.6、A【解析】
根据分段函数直接计算得到答案.【详解】因为所以.故选:.【点睛】本题考查了分段函数计算,意在考查学生的计算能力.7、A【解析】
模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果.【详解】程序运行过程如下:,;,;,;,;,;,;,,退出循环,输出结果为,故选:A.【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.8、B【解析】
根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.【详解】执行程序框;;;;;,满足,退出循环,因此输出,故选:B.【点睛】本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.9、D【解析】
通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.10、D【解析】
根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中,,
设,则,的几何意义为直线在轴上的截距的2倍,
由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;
设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.11、A【解析】
设球心为O,三棱柱的上底面ΔA1B1C1的内切圆的圆心为O1,该圆与边B【详解】如图,设三棱柱为ABC-A1B1C所以底面ΔA1B1C1为斜边是A1C1则圆O1的半径为O设球心为O,则由球的几何知识得ΔOO1M所以OM=2即球O的半径为25所以球O的体积为43故选A.【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径R、球心到小圆圆心的距离d和小圆半径r为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为a,b,斜边为c,则该直角三角形内切圆的半径r=a+b-c12、C【解析】
先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.【详解】把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。故选:C.【点睛】本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
根据约束条件画出可行域,再把目标函数转化为,对参数a分类讨论,当时显然不满足题意;当时,直线经过可行域中的点A时,截距最小,即z有最小值,再由最小值为7,得出结果;当时,的截距没有最小值,即z没有最小值;当时,的截距没有最大值,即z没有最小值,综上可得出结果.【详解】根据约束条件画出可行域如下:由,可得出交点,由可得,当时显然不满足题意;当即时,由可行域可知当直线经过可行域中的点A时,截距最小,即z有最小值,即,解得或(舍);当即时,由可行域可知的截距没有最小值,即z没有最小值;当即时,根据可行域可知的截距没有最大值,即z没有最小值.综上可知满足条件时.故答案为:3.【点睛】本题主要考查线性规划问题,约束条件和目标函数中都有参数,要对参数进行讨论.14、【解析】
对新加入的学生所扮演的角色进行分类讨论,分析各种情况下个学生所扮演的角色的分组,综合可得出结论.【详解】依题意,名学生分成组,则一定是个人组和个人组.①若新加入的学生是士兵,则可以将这个人分组如下;名士兵;士兵、排长、连长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是士兵,由对称性可知也可以是司令;②若新加入的学生是排长,则可以将这个人分组如下:名士兵;连长、营长、团长各名;旅长、师长、军长各名;名司令;名排长.所以新加入的学生可以是排长,由对称性可知也可以是军长;③若新加入的学生是连长,则可以将这个人分组如下:名士兵;士兵、排长、连长各名;连长、营长、团长各名;旅长、师长、军长各名;名司令.所以新加入的学生可以是连长,由对称性可知也可以是师长;④若新加入的学生是营长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是营长,由对称性可知也可以是旅长;⑤若新加入的学生是团长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;旅长、师长、军长各名;名司令;名团长.所以新加入的学生可以是团长.综上所述,新加入学生可以扮演种角色.故答案为:.【点睛】本题考查分类计数原理的应用,解答的关键就是对新加入的学生所扮演的角色进行分类讨论,属于中等题.15、或1【解析】
利用导数的几何意义,可得切线的斜率,以及切线方程,求得切线与轴和的交点,由三角形的面积公式可得所求值.【详解】的导数为,可得切线的斜率为3,切线方程为,可得,可得切线与轴的交点为,,切线与的交点为,可得,解得或。【点睛】本题主要考查利用导数求切线方程,以及直线方程的运用,三角形的面积求法。16、4【解析】设,则,,,,当且仅当,即时,等号成立.,故答案为4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)取的中点,连接,,证明平面得出,再得出;(2)建立空间坐标系,求出平面的法向量,计算,即可得出答案.【详解】(1)证明:取的中点,连接,,,,,,,故,又,,平面,平面,,,分别是,的中点,,.(2)解:四边形是正方形,,又,,平面,平面,在平面内作直线的垂线,以为原点,以,,为所在直线为坐标轴建立空间直角坐标系,则,0,,,1,,,2,,,0,,,1,,,2,,,1,,设平面的法向量为,,,则,即,令可得:,,,,.直线与平面所成角的正弦值为,.【点睛】本题主要考查了线面垂直的判定与性质,考查空间向量与空间角的计算,属于中档题.18、(1)(2)不存在;详见解析【解析】
(1)设,,,通过,即为的中点,转化求解,点的轨迹的方程.(2)设直线的方程为,先根据,可得,①,再根据韦达定理,点在椭圆上可得,②,将①代入②可得,该方程无解,问题得以解决【详解】(1)设,,则,,由题意知,所以为中点,由中点坐标公式得,即,又点在圆:上,故满足,得.曲线的方程.(2)由题意知直线的斜率存在且不为零,设直线的方程为,因为,故,即①,联立,消去得:,设,,,,,因为四边形为平行四边形,故,点在椭圆上,故,整理得②,将①代入②,得,该方程无解,故这样的直线不存在.【点睛】本题考查点的轨迹方程的求法、满足条件的点是否存在的判断与直线方程的求法,考查数学转化思想方法,是中档题.19、(1)(2)【解析】
(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为,求出在上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值.【详解】解:(1)或或解得或或无解综上不等式的解集为.(2)时,,即所以只需在时恒成立即可令,由解析式得在上是增函数,∴当时,即【点睛】本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是常用方法.掌握分类讨论思想是解题关键.20、(1);(2).【解析】
(1)以分别为轴,轴,轴,建立空间直角坐标系,设底面正方形边长为再求解与平面的法向量,继而求得直线与平面所成角的正弦值即可.(2)分别求解平面与平面的法向量,再求二面角的余弦值判断二面角大小即可.【详解】解:在正四棱锥中,底面正方形的对角线交于点所以平面取的中点的中点所以两两垂直,故以点为坐标原点,以分别为轴,轴,轴,建立空间直角坐标系.设底面正方形边长为因为所以所以,所以,设平面的法向量是,因为,,所以,,取则,所以所以,所以直线与平面所成角的正弦值为.设平面的法向量是,因为,,所以,取则所以,由知平面的法向量是,所以所以,所以锐二面角的大小为.【点睛】本题主要考查了建立平面直角坐标系求解线面夹角以及二面角的问题,属于中档题.21、(1)见解析(2)见解析【解析】
(1)利用导函数的正负确定函数的增减.(2)函数在有两个零点,即方程在区间有两解,令通过二次求导确定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市广场建设围护桩施工合同
- 电力公司合同管理规范
- 2024年度商品购销合作协议模板
- 2024年实习生学习合同3篇
- 2024年事业单位聘用协议到期不续签范例版
- 2024年施工方安全生产职责明细合同版
- 2024年学校多媒体教学设备采购协议3篇
- 2024年业务整合:双方补充协议3篇
- 2024年度科学研究与技术服务合同2篇
- 2024年古建修复项目协议3篇
- 【教学】《有理数的减法第二课时》精品教学
- Wonderlab元气羹新品方案
- 2023年北京市公务员考试《行测》真题【完整+答案+解析】
- 行为金融学课后答案1至5章anawer
- 带状疱疹入院记录、病程、沟通病历书写模板
- 隐患排查记录表(液化气站)
- 电子病历六级评审实践分享课件
- XX(单位)因私出国(境)证照管理登记表
- DB34T 4307.1-2022+内河水下工程结构物检测与评定技术规范+第1部分:桥梁部分-(高清正版)
- 模拟电子技术基础期末复习题
- 三位数乘一位数练习题(300道)
评论
0/150
提交评论