版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题02全等模型--一线三等角(K字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K字)模型)进行梳理及对应试题分析,方便掌握。模型1.一线三等角(K型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K型图”)钝角一线三等角条件:+CE=DE证明思路:+任一边相等例1.(2023·浙江·八年级假期作业)(1)如图1,已知:在中,,直线m经过点A,直线m,直线m,垂足分别为点D、E.证明:.(2)如图2,将(1)中的条件改为:在△ABC中,,D、A、E三点都在直线m上,并且有,其中为任意钝角,请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.例2.(2023春·上海·七年级专题练习)在直线上依次取互不重合的三个点,在直线上方有,且满足.(1)如图1,当时,猜想线段之间的数量关系是____________;(2)如图2,当时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在中,是钝角,,,直线与的延长线交于点,若,的面积是12,求与的面积之和.例3.(2022春·广东梅州·七年级校考阶段练习)如图(1)AB=9cm,AC⊥AB,BD⊥AB,AC=BD=7cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由;(2)在(1)的前提条件下,判断此时线段PC和线段PQ的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.例4.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知中,,,直线l过点C,过点A作,过点B作,垂足分别为D、E.求证:.(2)迁移应用:如图2,将一块等腰直角的三角板放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点N的坐标为,求点M的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线与y轴交于点P,与x轴交于点Q,将直线绕P点沿逆时针方向旋转后,所得的直线交x轴于点R.求点R的坐标.模型2.一线三等角(K型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。【常见模型及证法】异侧型一线三等角:锐角一线三等角直角一线三等角钝角一线三等角条件:+任意一边相等证明思路:+任一边相等例1.(2022·浙江杭州·一模)老师在上课时,在黑板上写了一道题:“如图,ABCD是正方形,点E在BC上,DF⊥AE于F,请问图中是否存在一组全等三角形?”小杰同学经过思考发现:△ADF≌△EAB.理由如下:因为ABCD是正方形(已知)所以∠B=90°且AD=AB和AD∥BC又因为DF⊥AE(已知)即∠DFA=90°(垂直的意义)所以∠DFA=∠B(等量代换)又AD∥BC所以∠1=∠2(两直线平行,内错角相等)在△ADF和△EAB中所以△ADF≌△EAB(AAS)小胖却说这题是错误的,这两个三角形根本不全等.你知道小杰的错误原因是什么吗?我们再添加一条线段,就能找到与△ADF全等的三角形,请能说出此线段的做法吗?并说明理由.例2.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,,,,,垂足分别为,,,.求的长”,请直接写出此题答案:的长为________.(2)探索证明:如图②,点,在的边、上,,点,在内部的射线上,且.求证:.(3)拓展应用:如图③,在中,,.点在边上,,点、在线段上,.若的面积为15,则与的面积之和为________.(直接填写结果,不需要写解答过程)例3.(2023·贵州遵义·八年级统考期末)过正方形(四边都相等,四个角都是直角)的顶点作一条直线.
(1)当不与正方形任何一边相交时,过点作于点,过点作于点如图(1),请写出,,之间的数量关系,并证明你的结论.(2)若改变直线的位置,使与边相交如图(2),其它条件不变,,,的关系会发生变化,请直接写出,,的数量关系,不必证明;(3)若继续改变直线的位置,使与边相交如图(3),其它条件不变,,,的关系又会发生变化,请直接写出,,的数量关系,不必证明.课后专项训练1.(2022·贵州·凯里一模)如图,在平面直角坐标系中、,轴,存在第一象限的一点使得是以为斜边的等腰直角三角形,则点的坐标(
).A.或 B. C.或 D.2.(2023·浙江·八年级假期作业)如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于()A.3 B.2 C. D.3.(2022·河北保定·模拟预测)如图,桌面上竖直放置着一个等腰直角三角板,若测得斜边的两端点到桌面的距离分别为,.(1)求证:;(2)若,,求的长.4.(2022·贵州铜仁·中考真题)如图,点C在上,.求证:.5.(2023春·陕西西安·七年级校联考期末)(1)【问题发现】如图1,△ABC与△CDE中,∠B=∠E=∠ACD=90°,AC=CD,B、C、E三点在同一直线上,AB=3,ED=4,则BE=_____.(2)【问题提出】如图2,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积.(3)【问题解决】如图3,四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD面积为12且CD的长为6,求△BCD的面积.6.(2022·河南·八年级校联考期中)在一次课题学习活动中,老师提出了如下问题:如图,四边形是正方形,点是边的中点,,且交正方形外角平分线于点.请你探究与存在怎样的数量关系,并证明你的结论正确.经过探究,小明得出的结论是,而要证明结论,就需要证明和所在的两个三角形全等,但和显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点是边的中点,小明想到的方法是如图2,取的中点,连接,证明.从而得到.请你参考小明的方法解决下列问题.(1)如图3,若把条件“点是边的中点”改为“点是边上的任意一点”,其余条件不变,证明结论仍然成立;(2)如图4,若把条件“点是边的中点”改为:“点是边延长线上的一点”,其余条件仍不变,那么结论是否还成立?若成立,请完成证明过程,若不成立,请说明理由.
7.(2022·黑龙江牡丹江·九年级期末)平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.(1)当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当三角板绕点A顺时针旋转至图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.8.(2022·黑龙江·桦南县九年级期中)如图1,在中,,,直线经过点,且于,于.(1)由图1,证明:;(2)当直线绕点旋转到图2的位置时,请猜想出,,的等量关系并说明理由;(3)当直线绕点旋转到图3的位置时,试问,,又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).9.(2022·山西阳泉·八年级期中)我们在第十二章《全等三角形》中学习了全等三角形的性质和判定,在一些探究题中经常用以上知识转化角和边,进而解决问题.例如:我们在解决:“如图1,在中,,,线段经过点C,且于点D,于点E.求证:,”这个问题时,只要证明,即可得到解决,积累经验:(1)请写出证明过程;类比应用:(2)如图2,在平面直角坐标系中,中,,,点A的坐标为,点C的坐标为,求点B与x轴的距离.拓展提升:(3)如图3,在平面直角坐标系中,,,点A的坐标为,点C的坐标为,求点B的坐标.10.(2023春·浙江·八年级期中)【初步探究】(1)如图1,在四边形中,,E是边上一点,,连接.请判断的形状,并说明理由.【问题解决】(2)若设,试利用图1验证勾股定理.【拓展应用】(3)如图2,在平面直角坐标系中,已知点,点,点C在第一象限内,若为等腰直角三角形,求点C的坐标.11.(2022秋·河南信阳·八年级校考阶段练习)通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图,,,过点作于点,过点作于点.由,得.又,可以推理得到.进而得到___________,___________.我们把这个数学模型称为“字”模型或“一线三等角”模型;【模型应用】(2)①如图,,,,连接,,且于点,与直线交于点.求证:点是的中点;②如图,在平面直角坐标系中,点的坐标为,点为平面内任一点.若是以为斜边的等腰直角三角形,请直接写出点的坐标.12.(2023春·上海·七年级专题练习)通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:[模型呈现]如图1,,,过点B作于点C,过点D作于点E.求证:.[模型应用]如图2,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积为________________.[深入探究]如图3,,,,连接,,且于点F,与直线交于点G.若,,则的面积为_____________.13.(2022·黑龙江佳木斯·三模)在中,,,为直线上一点,连接,过点作交于点,交于点,在直线上截取,连接.(1)当点,都在线段上时,如图①,求证:;(2)当点在线段的延长线上,点在线段的延长线上时,如图②;当点在线段的延长线上,点在线段的延长线上时,如图③,直接写出线段,,之间的数量关系,不需要证明.14.(2022·安徽·合肥市庐阳中学二模)(1)如图,等腰直角中,,,线段经过点,过A作于点,过作于求证:≌.(2)如图,已知在平面直角坐标系中,为坐标原点,点的坐标为,点的坐标为,点是平面直角坐标系中的一点,若是以为直角边的等腰直角三角形,求点的坐标;(3)如图,已知在平面直角坐标系中,为坐标原点,在等腰直角中,,,点在线段上从向运动运动到点停止,以点为直角顶点向右上方做等腰直角,求点移动的距离.15.(2022秋·广东广州·八年级校考阶段练习)已知:CD是经过∠BCA的顶点C的一条直线,CA=CB,E、F是直线CD上两点,∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,∠BCD>∠ACD.①如图1,∠BCA=90°,∠α=90°,写出BE,EF,AF间的等量关系:.②如图2,∠α与∠BCA具有怎样的数量关系,能使①中的结论仍然成立?写出∠α与∠BCA的数量关系.(2)如图3.若直线CD经过∠BCA的外部,∠α=∠BCA,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.16.(2022秋·湖南永州·八年级统考期中)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=105°时,∠EDC=°,∠DEC=°;点D从点B向点C运动时,∠BDA逐渐变.(填“大”或“小”)。(2)当DC等于多少时,△ABD≌△DCE?请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.17.(2023春·浙江·八年级专题练习)在中,,,直线MN经过点C,且于D点,于E点.(1)当直线MN绕点C旋转到图①的位置时,求证:;(2)当直线MN绕点C旋转到图②、图③的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.
18.(2022秋·浙江·八年级专题练习)如图,等腰直角△ABC中,BC=AC,∠ACB=90°,现将该三角形放置在平面直角坐标系中,点B坐标为(0,2),点C坐标为(6,0).(1)过点A作AD⊥x轴,求OD的长及点A的坐标;(2)连接OA,若Р为坐标平面内不同于点A的点,且以O、P、C为顶点的三角形与△OAC全等,请直接写出满足条件的点P的坐标;(3)已知OA=10,试探究在x轴上是否存在点Q,使△OAQ是以OA为腰的等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
专题02全等模型--一线三等角(K字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K字)模型)进行梳理及对应试题分析,方便掌握。模型1.一线三等角(K型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K型图”)钝角一线三等角条件:+CE=DE证明思路:+任一边相等例1.(2023·浙江·八年级假期作业)(1)如图1,已知:在中,,直线m经过点A,直线m,直线m,垂足分别为点D、E.证明:.(2)如图2,将(1)中的条件改为:在△ABC中,,D、A、E三点都在直线m上,并且有,其中为任意钝角,请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)见解析;(2)成立,见解析【分析】(1)根据可证明,可得,可得.(2)由已知条件可知,,可得,结合条件可证明,同(1)可得出结论.【详解】证明:(1)如图1,∵直线m,直线m,∴,∵,∴,∵,∴,在和中,∴,∴,∴;(2)如图2,∵,∴,∴,在和中,∴,∴,∴.【点睛】本题主要考查了全等三角形的判定和性质,由条件证明三角形全等得到是解题的关键.例2.(2023春·上海·七年级专题练习)在直线上依次取互不重合的三个点,在直线上方有,且满足.(1)如图1,当时,猜想线段之间的数量关系是____________;(2)如图2,当时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在中,是钝角,,,直线与的延长线交于点,若,的面积是12,求与的面积之和.【答案】(1)DE=BD+CE(2)DE=BD+CE仍然成立,理由见解析(3)△FBD与△ACE的面积之和为4【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,由AAS证得△ADB≌△CAE,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ABF即可得出结果.【详解】(1)解:DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(3)解:∵∠BAD<∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴S△ABD=S△CAE,设△ABC的底边BC上的高为h,则△ABF的底边BF上的高为h,∴S△ABC=BC•h=12,S△ABF=BF•h,∵BC=3BF,∴S△ABF=4,∵S△ABF=S△BDF+S△ABD=S△FBD+S△ACE=4,∴△FBD与△ACE的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,三角形的面积,解题的关键是熟练掌握全等三角形的判定与性质.例3.(2022春·广东梅州·七年级校考阶段练习)如图(1)AB=9cm,AC⊥AB,BD⊥AB,AC=BD=7cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由;(2)在(1)的前提条件下,判断此时线段PC和线段PQ的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)△ACP与△BPQ全等,理由见解析;(2)PC⊥PQ,证明见解析;(3)存在,当t=1s,x=2cm/s或t=s,x=cm/s时,△ACP与△BPQ全等.【分析】(1)利用定理证明;(2)根据全等三角形的性质判断线段和线段的位置关系;(3)分,两种情况,根据全等三角形的性质列式计算.【详解】(1)△ACP与△BPQ全等,理由如下:当t=1时,AP=BQ=2,则BP=9﹣2=7,∴BP=AC,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS);(2)PC⊥PQ,证明:∵△ACP≌△BPQ,∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直;(3)①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴9﹣2t=7,解得,t=1(s),则x=2(cm/s);②若△ACP≌△BQP,则AC=BQ,AP=BP,则2t=×9,解得,t=(s),则x=7÷=(cm/s),故当t=1s,x=2cm/s或t=s,x=cm/s时,△ACP与△BPQ全等.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.例4.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知中,,,直线l过点C,过点A作,过点B作,垂足分别为D、E.求证:.(2)迁移应用:如图2,将一块等腰直角的三角板放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点N的坐标为,求点M的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线与y轴交于点P,与x轴交于点Q,将直线绕P点沿逆时针方向旋转后,所得的直线交x轴于点R.求点R的坐标.【答案】(1)见详解;(2)点M的坐标为(1,3);(3)R(,0)【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,判断出MF=NG,OF=MG,设M(m,n)列方程组求解,即可得出结论;(3)过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,先求出OP=4,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=5,SH=OQ=1,进而求出直线PR的解析式,即可得出结论.【详解】(1)证明:∵∠ACB=90°,AD⊥l,∴∠ACB=∠ADC.∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE,∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC.∴△ACD≌△CBE,∴CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°,∴由(1)得△OFM≌△MGN,∴MF=NG,OF=MG,设M(m,n),∴MF=m,OF=n,∴MG=n,NG=m,∵点N的坐标为(4,2)∴解得∴点M的坐标为(1,3);(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣4x+4,由x=0得y=4,∴P(0,4),∴OP=4,由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°,∴∠PSQ=45°=∠QPS.∴PQ=SQ.∴由(1)得SH=OQ,QH=OP.∴OH=OQ+QH=OQ+OP=4+1=5,SH=OQ=1.∴S(5,1),设直线PR为y=kx+b,则,解得.∴直线PR为y=x+4.由y=0得,x=,∴R(,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.模型2.一线三等角(K型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。【常见模型及证法】异侧型一线三等角:锐角一线三等角直角一线三等角钝角一线三等角条件:+任意一边相等证明思路:+任一边相等例1.(2022·浙江杭州·一模)老师在上课时,在黑板上写了一道题:“如图,ABCD是正方形,点E在BC上,DF⊥AE于F,请问图中是否存在一组全等三角形?”小杰同学经过思考发现:△ADF≌△EAB.理由如下:因为ABCD是正方形(已知)所以∠B=90°且AD=AB和AD∥BC又因为DF⊥AE(已知)即∠DFA=90°(垂直的意义)所以∠DFA=∠B(等量代换)又AD∥BC所以∠1=∠2(两直线平行,内错角相等)在△ADF和△EAB中所以△ADF≌△EAB(AAS)小胖却说这题是错误的,这两个三角形根本不全等.你知道小杰的错误原因是什么吗?我们再添加一条线段,就能找到与△ADF全等的三角形,请能说出此线段的做法吗?并说明理由.【答案】小杰错误的原因是AD和AB不是对应边,在证明两个三角形全等时,误以为对应边了;线段为作BH⊥AE于点H,证明见详解;【分析】根据小杰的证明方法,可以发现,在证明两个三角形全等时,出现了问题,然后说出出错的原因即可,然后添加合适的辅助线段,说明与△ADF全等的三角形成立的理由即可解答本题;【详解】小杰错误的原因是AD和AB不是对应边,在证明两个三角形全等时,误以为对应边了,作BH⊥AE于H,则△ADF≌△BAH;∵四边形ABCD是正方形,∴AD=BA,∠DAB=90°,∴∠HAB+∠FAD=90°,∵DF⊥AE,BH⊥AE,∴∠DFA=∠AHB=90°,∴∠HAB+∠HBA=90°,∴∠FAD=∠HBA,在△ADF和△BAH中∴△ADF≌△BAH(AAS);【点睛】本题考查正方形的性质、全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答;例2.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,,,,,垂足分别为,,,.求的长”,请直接写出此题答案:的长为________.(2)探索证明:如图②,点,在的边、上,,点,在内部的射线上,且.求证:.(3)拓展应用:如图③,在中,,.点在边上,,点、在线段上,.若的面积为15,则与的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm;(2)见解析(3)5【分析】(1)利用AAS定理证明△CEB≌△ADC,根据全等三角形的性质解答即可;(2)由条件可得∠BEA=∠AFC,∠4=∠ABE,根据AAS可证明△ABE≌△CAF;(3)先证明△ABE≌△CAF,得到与的面积之和为△ABD的面积,再根据故可求解.【详解】解:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5cm.∵DC=CE−DE,DE=1.7cm,∴DC=2.5−1.7=0.8cm,∴BE=0.8cm故答案为:0.8cm;(2)证明:∵∠1=∠2,∴∠BEA=∠AFC.∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE.∵∠AEB=∠AFC,∠ABE=∠4,AB=AC,∴△ABE≌△CAF(AAS).(3)∵∴∠ABE+∠BAE=∠FAC+∠BAE=∠FAC+∠ACF∴∠ABE=∠CAF,∠BAE=∠ACF又∴△ABE≌△CAF,∴∴与的面积之和等于与的面积之和,即为△ABD的面积,∵,△ABD与△ACD的高相同则=5故与的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.例3.(2023·贵州遵义·八年级统考期末)过正方形(四边都相等,四个角都是直角)的顶点作一条直线.
(1)当不与正方形任何一边相交时,过点作于点,过点作于点如图(1),请写出,,之间的数量关系,并证明你的结论.(2)若改变直线的位置,使与边相交如图(2),其它条件不变,,,的关系会发生变化,请直接写出,,的数量关系,不必证明;(3)若继续改变直线的位置,使与边相交如图(3),其它条件不变,,,的关系又会发生变化,请直接写出,,的数量关系,不必证明.【答案】(1),证明见解析;(2);(3)【分析】(1)根据同角的余角相等可证,再证,根据全等三角形的对应边相等进行代换即可;(2)根据同角的余角相等可证,再证,根据全等三角形的对应边相等进行代换即可;(3)根据同角的余角相等可证,再证,根据全等三角形的对应边相等进行代换即可.【详解】(1),证明:四边形是正方形,又,∴在和中,(2),理由是:四边形是正方形,又,∴在和中,∴EF=AF-AE=BE-DF(3),理由是:四边形是正方形,又,∴在和中,EF=AE-AF=DF-BE【点睛】本题考查的是三角形全等的判定和性质,掌握三角形的判定方法及能利用同角的余角相等证明是关键.课后专项训练1.(2022·贵州·凯里一模)如图,在平面直角坐标系中、,轴,存在第一象限的一点使得是以为斜边的等腰直角三角形,则点的坐标(
).A.或 B. C.或 D.【答案】C【分析】分点P在AB的上方和点P在AB的下方,根据全等三角形的判定与性质进行讨论求解即可.【详解】解:当点P在AB的上方时,过P作x轴的平行线交y轴于E,交CB延长线于F,如图1,则∠AEP=∠PFB=∠APB=90°,E(0,2a﹣5),F(6,2a﹣5),∴PE=a,PF=6﹣a,AE=2a﹣9,∵∠EAP+∠EPA=90°,∠EPA+∠BPF=90°,∴∠EAP=∠BPF,又∠AEP=∠PFB,PA=PB,∴△AEP≌△PFB(AAS),∴AE=PF,∴6﹣a=2a﹣9,解得:a=5,∴P(5,5);当点P在AB的下方时,同样过P作x轴的平行线交y轴于E,交CB于F,如图2,则∠AEP=∠PFB=∠APB=90°,E(0,2a﹣5),F(6,2a﹣5),∴PE=a,PF=6﹣a,AE=9﹣2a,∵∠EAP+∠EPA=90°,∠EPA+∠BPF=90°,∴∠EAP=∠BPF,又∠AEP=∠PFB,PA=PB,∴△AEP≌△PFB(AAS),∴AE=PF,∴9﹣2a=6﹣a,解得:a=3,∴P(3,1),综上,点P的坐标为(3,1)或(5,5),故选:C.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定与性质、等角的余角相等、坐标与图形性质、解一元一次方程等知识,过已知点向坐标轴作平行线或垂线,然后求出相关线段的长是解决此类问题的基本方法.2.(2023·浙江·八年级假期作业)如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于()A.3 B.2 C. D.【答案】A【分析】根据等腰三角形的性质得到∠B=∠C,推出∠BAD=∠CDE,根据线段垂直平分线的性质得到AD=ED,根据全等三角形的性质得到CD=AB=9,BD=CE,即可得到结论.【详解】解:∵AB=AC=9,∴∠B=∠C,∵∠ADE=∠B,∠BAD=180°﹣∠B﹣∠ADB,∠CDE=180°﹣∠ADE﹣∠ADB,∴∠BAD=∠CDE,∵AE的中垂线交BC于点D,∴AD=ED,在△ABD与△DCE中,,∴△ABD≌△DCE(AAS),∴CD=AB=9,BD=CE,∵CD=3BD,∴CE=BD=3故选:A.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,全等三角形的性质,属于基础题.3.(2022·河北保定·模拟预测)如图,桌面上竖直放置着一个等腰直角三角板,若测得斜边的两端点到桌面的距离分别为,.(1)求证:;(2)若,,求的长.【答案】(1)见解析;(2)3【分析】(1)先利用同角的余角相等,判断出∠DAC=∠BCE,进而判断出△ACD≌△CBE;(2)由全等三角形的性质,即可求出答案.【详解】解:(1)证明:∵,,∴,∴.∵,∴,∴,∴.∴(2)解:∵,∴,.∵,∴,∵,∴,∴.【点睛】此题主要考查了等腰直角三角形的性质,全等三角形的判定和性质,判断出△ACD≌△CBE是解本题的关键.4.(2022·贵州铜仁·中考真题)如图,点C在上,.求证:.【答案】见解析【分析】直接根据一线三垂直模型利用AAS证明即可.【详解】解:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠B=∠D=∠ACE=90°,∴∠BAC+∠BCA=90°=∠BCA+∠DCE,∴∠BAC=∠DCE,在△ABC和△CDE中,,∴△ABC≌△CDE(AAS).【点睛】本题主要考查了全等三角形的判定,熟知一线三垂直模型是解题的关键.5.(2023春·陕西西安·七年级校联考期末)(1)【问题发现】如图1,△ABC与△CDE中,∠B=∠E=∠ACD=90°,AC=CD,B、C、E三点在同一直线上,AB=3,ED=4,则BE=_____.(2)【问题提出】如图2,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积.(3)【问题解决】如图3,四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD面积为12且CD的长为6,求△BCD的面积.【答案】(1)7;(2)S△BCD=8;(3)S△BCD=6.【分析】(1)∠B=∠E=∠ACD=90°,根据同角的余角相等,可得∠ACB=∠D,由已知条件可证△ABC≌△CED,可得答案;(2)过D作DE⊥BC交BC延长线于E,同(1)中的方法,可证△ABC≌△CED,可得答案;(3)过A作AE⊥CD于E,过B作BF⊥CD交DC延长线于F,由△ACD面积为12且CD的长为6,可得AE=4,进而可得CE=2,同(1)中证法,可得△ACE≌△CBF,由全等三角形的性质可求得答案.【详解】解:(1)∵∠ACD=∠E=90°,∴∠ACB=90°﹣∠DCE=∠D,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴AB=CE=3,BC=ED=4,∴BE=BC+CE=7;故答案为:7;(2)过D作DE⊥BC交BC延长线于E,如图:∵DE⊥BC,CD⊥AC,∴∠E=∠ACD=90°,∴∠ACB=90°﹣∠DCE=∠CDE,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴BC=ED=4,∴S△BCD=BC•DE=8;(3)过A作AE⊥CD于E,过B作BF⊥CD交DC延长线于F,如图:∵△ACD面积为12且CD的长为6,∴×6•AE=12,∴AE=4,∵∠ADC=45°,AE⊥CD,∴△ADE是等腰直角三角形,∴DE=AE=4,∴CE=CD﹣DE=2,∵∠ABC=∠CAB=45°,∴∠ACB=90°,AC=BC,∴∠ACE=90°﹣∠BCF=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF(AAS),∴BF=CE=2,∴S△BCD=CD•BF=6.【点睛】本题考查全等三角形的性质与判定,属于类比探究类的题目,掌握模型思想,准确作出辅助线构造全等三角形是解题的关键.6.(2022·河南·八年级校联考期中)在一次课题学习活动中,老师提出了如下问题:如图,四边形是正方形,点是边的中点,,且交正方形外角平分线于点.请你探究与存在怎样的数量关系,并证明你的结论正确.经过探究,小明得出的结论是,而要证明结论,就需要证明和所在的两个三角形全等,但和显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点是边的中点,小明想到的方法是如图2,取的中点,连接,证明.从而得到.请你参考小明的方法解决下列问题.(1)如图3,若把条件“点是边的中点”改为“点是边上的任意一点”,其余条件不变,证明结论仍然成立;(2)如图4,若把条件“点是边的中点”改为:“点是边延长线上的一点”,其余条件仍不变,那么结论是否还成立?若成立,请完成证明过程,若不成立,请说明理由.
【答案】(1)正确,见解析;(2)正确,见解析【分析】(1)在AB上取点,连接,证明△PAE≌△CEF即可;(2)延长BA至,使=CE,连接,证明△ANE≌△ECF即可.【详解】解:(1)正确.证明:在AB上取一点M,使AM=EC,连接ME.四边形是正方形,∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF(ASA),∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF(ASA)∴AE=EF.【点睛】本题考查的是构造三角形全等证明线段的相等,同时考查了正方形的性质,掌握构造全等三角形是解题关键.7.(2022·黑龙江牡丹江·九年级期末)平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.(1)当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当三角板绕点A顺时针旋转至图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.【答案】(1)AF+BF=2CE仍成立(2)AF-BF=2CE【分析】(1)过B作BH⊥CE于点H,可证△ACE≌△CBH,通过线段的等量代换可得结论;(2)过点B作BG⊥CE,交CE的延长线于点G,△ACE≌△CBG,通过线段的等量代换可得答案.(1)解:图2,AF+BF=2CE仍成立,
证明:如图,过B作BH⊥CE于点H,∵∠BCH+∠ACE=90°,又∵在直角△ACE中,∠ACE+∠CAE=90°,∴∠CAE=∠BCH,又∵AC=BC,∠AEC=∠BHC=90°∴△ACE≌△CBH.∴CH=AE,BF=HE,CE=BH,∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.(2)解:不成立,线段AF、BF、CE之间的数量关系为:AF-BF=2CE证明:如图,过点B作BG⊥CE,交CE的延长线于点G,∵∠BCG+∠ACE=90°,又∵在直角△ACE中,∠ACE+∠CAE=90°,∴∠CAE=∠BCG,又∵AC=BC,∠AEC=∠BGC=90°∴△ACE≌△CBG.∴CG=AE,BF=GE,CE=BG,∴AF-BF=AE+EF-BF=CG+EF-GE=CE+EF=2EC.【点睛】本题考查全等三角形的判定,根据题意正确作出辅助线构造全等三角形是解题的关键.8.(2022·黑龙江·桦南县九年级期中)如图1,在中,,,直线经过点,且于,于.(1)由图1,证明:;(2)当直线绕点旋转到图2的位置时,请猜想出,,的等量关系并说明理由;(3)当直线绕点旋转到图3的位置时,试问,,又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).【答案】(1)证明见解析;(2),证明过程见解析;(3),证明过程见解析【分析】(1)先证明△ADC≌△CEB,得到AD=CE,DC=BE,进而得到DE=CE+DC=AD+BE即可;(2)同(1)中思路,证明△ADC≌△CEB,进而得到DE=CE-DC=AD-BE即可;(3)同(1)中思路,证明△ADC≌△CEB,进而得到DE=DC-CE=BE-AD即可.【详解】解:(1)证明:在中,∵,∴,∵,∴,∴,又∵,,∴,∴,,∵直线经过点,∴;(2),,的等量关系为:,理由如下:∵于,于∴,∴,,∴,在和中,∴∴,,∴;(3)当旋转到图3的位置时,、、所满足的等量关系是,理由如下:∵于,于∴,∴,,∴,在和中,∴∴,,∴.【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.9.(2022·山西阳泉·八年级期中)我们在第十二章《全等三角形》中学习了全等三角形的性质和判定,在一些探究题中经常用以上知识转化角和边,进而解决问题.例如:我们在解决:“如图1,在中,,,线段经过点C,且于点D,于点E.求证:,”这个问题时,只要证明,即可得到解决,积累经验:(1)请写出证明过程;类比应用:(2)如图2,在平面直角坐标系中,中,,,点A的坐标为,点C的坐标为,求点B与x轴的距离.拓展提升:(3)如图3,在平面直角坐标系中,,,点A的坐标为,点C的坐标为,求点B的坐标.【答案】(1)见解析;(2)1;(2).【分析】(1)根据AD⊥DE、BE⊥DE得到∠D=∠E=90°,再根据直角三角形的性质以及同角的余角相等,推出∠DAC=∠BCE,进而证明△ADC≌△CEB,最后再根据全等三角形的性质即可得到结论;(2)过点B作BE⊥x轴于点E,通过证明△AOC≌△CEB,进而得出CO=BE,再根据点C的坐标即可得到结果;(3)过点C作CF⊥x轴于点F,再过点A、B分别作AE⊥CF,BD⊥CF,通过证明△CDB≌△AEC,进而得出BD=CE,AE=CD,最后根据点A的坐标为(2,1),点C的坐标为(4,2)即可求出点B坐标.【详解】解:(1)证明:∵,∴,∴,又∵,∴,∴,在和中,,∴≌,∴;(2)如图,过点B作BE⊥x轴于点E,∵,∴,又∵,∴,∴,在和中,,∴≌,∴,又∵点C的坐标(1,0),∴,∴,即点B到x轴的距离是1;(3)如图,过点C作CF⊥x轴于点F,再过点A、B分别作AE⊥CF,BD⊥CF,∵,∴,∴,又∵,∴,∴,
在和中,,∴≌,∴,又∵A的坐标为(2,1),点C的坐标为(4,2),∴,,设B点坐标为(a,b),则a=4-1=3,b=2+2=4,∴点B的坐标为(3,4).【点睛】本题综合考查了全等三角形的判定与性质以及平面直角坐标系中求点坐标的综合应用问题,学会构建“一线三等角”模型,熟练掌握全等三角形的判定与性质是解题的关键.10.(2023春·浙江·八年级期中)【初步探究】(1)如图1,在四边形中,,E是边上一点,,连接.请判断的形状,并说明理由.【问题解决】(2)若设,试利用图1验证勾股定理.【拓展应用】(3)如图2,在平面直角坐标系中,已知点,点,点C在第一象限内,若为等腰直角三角形,求点C的坐标.【答案】(1)是等腰直角三角形,理由见解析;(2)见解析;(3)点C的坐标为(1,2)或(3,3)或.【分析】(1)利用全等三角形的判定证明≌,再由全等三角形的性质及直角三角形的性质即可得到结论;(2)利用图形的面积建立等式进行化简即可;(3)分三种情况,作辅助线构造全等三角形求解即可.【详解】解:(1)是等腰直角三角形,理由如下:在和中,,∴≌,∴AE=DE,∠AEB=∠EDC,∵在中,∠C=90°,∴∠EDC+∠DEC=90°,∴∠AEB+∠DEC=90°,∵∠AEB+∠DEC+∠AED=180°,∴∠AED=90°,∴是等腰直角三角形;(2)由题可知,四边形ABCD为梯形,∵≌,,,,∴AB=CE=b,BE=CD=a,∴,又∵,∴,∴,∴;(3)①当∠CAB=90°,CA=AB时,如图,过点C作CF⊥x轴于点F,过点B作BE⊥x轴于点E,∵点A(2,0),点B(4,1),∴BE=1,OA=2,OE=4,∴AE=2,∵∠CAB=90°,BE⊥x轴,∴∠CAF+∠BAE=90°,∠BAE+∠ABE=90°,∴∠CAF=∠ABE,又∵AC=AB,∠AFC=∠AEB=90°,∴≌,∴CF=AE=2,AF=BE=1,∴OF=OA-AF=1,∴点C坐标为(1,2);②当∠ABC=90°,AB=BC时,如图,过点B作BE⊥x轴于点E,过点C作CF⊥BE交EB延长线于点F,∵∠ABC=90°,BE⊥x轴,∴∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,∴∠BAE=∠CBF,又∵BC=AB,∠AEB=∠CFB=90°,∴≌,∴BE=CF=1,AE=BF=2,∴EF=3,∴点C坐标为(3,3);③当∠ACB=90°,CA=BC时,如图,过点C作CD⊥x轴于点D,过点B作BF⊥CD于点F,BE⊥x轴于点E,∵∠ACB=90°,CD⊥x轴,∴∠ACD+∠BCF=90°,∠ACD+∠CAD=90°,∴∠BCF=∠CAD,又∵AC=BC,∠CDA=∠BFC=90°,∴≌,∴CF=AD,BF=CD=DE,∵AD+DE=AE=2,∴2=AD+CD=AD+CF+DF=2AD+1,∴,∴,,∴点C坐标为,综上所述,点C的坐标为(1,2)或(3,3)或.【点睛】本题考查了全等三角形的判定与性质,勾股定理的验证,平面直角坐标系中等腰直角三角形的存在性问题,熟练掌握各性质及判定定理,正确作辅助线构造出全等三角形是解题的关键.11.(2022秋·河南信阳·八年级校考阶段练习)通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图,,,过点作于点,过点作于点.由,得.又,可以推理得到.进而得到___________,___________.我们把这个数学模型称为“字”模型或“一线三等角”模型;【模型应用】(2)①如图,,,,连接,,且于点,与直线交于点.求证:点是的中点;②如图,在平面直角坐标系中,点的坐标为,点为平面内任一点.若是以为斜边的等腰直角三角形,请直接写出点的坐标.【答案】(1);(2)①证明见解析;②或【分析】(1)根据全等三角形的对应边相等解答;(2)①作于,于,证明,,根据全等三角形的性质得到,再证明,根据全等三角形的性质证明结论;②过点作轴于点,过点作轴于点,两直线交于点,过点作轴于点,交于点,利用(1)的结论即可解答.【详解】(1)解:∵,∴,在和中,,∴,∴,.故答案为:;.(2)①证明:如图,作于,于,∵,,∴,∴,在和中,,∴,∴,∵,,∴,∴,在和中,,∴,∴,∴,∵,,∴,在和中,∴,∴,∴点是的中点;②解:如图,和是以为斜边的等腰直角三角形,∴,,过点作轴于点,过点作轴于点,两直线交于点,过点作轴于点,交于点,∴,∵,∴四边形是矩形,∴,,,∵是以为斜边的等腰直角三角形,∴,,由(1)可知,,∴,,∵点的坐标为,∴,,又∵,∴,解得:,,∴点的坐标为,∵,,,由(1)可知,,∴,,∴点的坐标为.综上所述,是以为斜边的等腰直角三角形,点B的坐标为或.【点睛】本题属于三角形综合题,考查全等三角形的判定和性质、坐标与图形性质.掌握全等三角形的判定定理和性质定理是解题的关键.12.(2023春·上海·七年级专题练习)通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:[模型呈现]如图1,,,过点B作于点C,过点D作于点E.求证:.[模型应用]如图2,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积为________________.[深入探究]如图3,,,,连接,,且于点F,与直线交于点G.若,,则的面积为_____________.【答案】[模型呈现]见解析;[模型应用]50;[深入探究]63【分析】[模型呈现]证明,根据全等三角形的对应边相等得到;[模型应用]根据全等三角形的性质得到,,,根据梯形的面积公式计算,得到答案;[深入探究]过点D作于P,过点E作交的延长线于Q,根据全等三角形的性质得到,证明,得到,进而求出,根据三角形的面积公式计算即可.【详解】[模型呈现]证明:∵,∴,∵,∴,∴,∴,在和中,,∴,∴;[模型应用]解:由[模型呈现]可知,,∴,则,故答案为:50;[深入探究]过点D作于P,过点E作交AG的延长线于Q,由[模型呈现]可知,,∴,在和中,,∴,∴,∵,∴,∴,∴,∴,故答案为:63.【点睛】本题考查的是全等三角形的判定和性质、三角形的面积计算,熟记三角形确定的判定定理是解题的关键.13.(2022·黑龙江佳木斯·三模)在中,,,为直线上一点,连接,过点作交于点,交于点,在直线上截取,连接.(1)当点,都在线段上时,如图①,求证:;(2)当点在线段的延长线上,点在线段的延长线上时,如图②;当点在线段的延长线上,点在线段的延长线上时,如图③,直接写出线段,,之间的数量关系,不需要证明.【答案】(1)见解析;(2)图②:;图③:【分析】(1)过点作交的延长线于点.证明,根据全等三角形的性质可得,.再证,由此即可证得结论;(2)图②:,类比(1)中的方法证明即可;图③:,类比(1)中的方法证明即可.【详解】(1)证明:如图,过点作交的延长线于点.∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴.∴.∵,,∴.在和中,∴.∴.∵,∴.(2)图②:.证明:过点作交于点.∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴,∵∴.∴.∵,,∴.在和中,∴.∴.∵,∴.图③:.证明:如图,过点作交的延长线于点.∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴.∴.∵,,∴.在和中,∴.∴.∵,∴.【点睛】本题是全等三角形的综合题,正确作出辅助线,构造全等三角形是解决问题的关键.14.(2022·安徽·合肥市庐阳中学二模)(1)如图,等腰直角中,,,线段经过点,过A作于点,过作于求证:≌.(2)如图,已知在平面直角坐标系中,为坐标原点,点的坐标为,点的坐标为,点是平面直角坐标系中的一点,若是以为直角边的等腰直角三角形,求点的坐标;(3)如图,已知在平面直角坐标系中,为坐标原点,在等腰直角中,,,点在线段上从向运动运动到点停止,以点为直角顶点向右上方做等腰直角,求点移动的距离.【答案】(1)见解析;(2),,,;(3)8【分析】(1)根据等腰直角三角形的性质证明即可;(2)分四种情况,由(1)的结论并结合等腰直角三角形的性质即可证明;(3)过点作轴于点,过点作于点,由(1)的结论和等腰直角三角形的性质即可证明.【详解】解:(1)为等腰直角三角形,,又,,,,又,,即,≌;(2)分四种情况讨论:当点为直角顶点时,且点在左侧时,如图,过点作轴于点.为等腰直角三角形,由(1)可知:≌,,,,,,,,;其余三种情况如图所示,同理可求得:,,;(3)过点作轴于点,过点作于点,如图,为等腰直角三角形,由(1)可知:≌,,,,点在直线上运动,当点在点时,点的坐标是,当点在点时,点的坐标是,点运动的距离是.【点睛】本题考查了等腰直角三角形的性质和全等三角形的判定和性质,解决本题的关键是掌握等腰直角三角形的性质.15.(2022秋·广东广州·八年级校考阶段练习)已知:CD是经过∠BCA的顶点C的一条直线,CA=CB,E、F是直线CD上两点,∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,∠BCD>∠ACD.①如图1,∠BCA=90°,∠α=90°,写出BE,EF,AF间的等量关系:.②如图2,∠α与∠BCA具有怎样的数量关系,能使①中的结论仍然成立?写出∠α与∠BCA的数量关系.(2)如图3.若直线CD经过∠BCA的外部,∠α=∠BCA,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.【答案】(1)①EF=BE-AF;②∠α+∠BCA=180°,理由见解析;(2)不成立,EF=BE+AF,证明见解析【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可得出结论;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可得出结论;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可得出结论.【详解】(1)①EF、BE、AF的数量关系:EF=BE-AF,证明:当α=90°时,∠BEC=∠CFA=90°,∵∠BCA=90°,∴∠BCE+∠ACF=90°,∵∠BCE+∠CBE=90°,∴∠ACF=∠CBE,∵AC=BC,∴△BCE≌△CAF,∴BE=CF,CE=AF,∵CF=CE+EF,∴EF=CF-CE=BE-AF;②∠α与∠BCA关系:∠α+∠BCA=180°当∠α+∠BCA=180°时,①中结论仍然成立;理由是:如题图2,∵∠BEC=∠CFA=∠α,,∠α+∠ACB=180°,又∵∴∠CBE=∠ACF,在△BCE和△CAF中∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF-CE=BE-AF;故答案为:∠α+∠BCA=180°;(2)EF、BE、AF的数量关系:EF=BE+AF,理由如下∵∠BEC=∠CFA=∠α,∠α=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF∴∠EBC=∠ACF,在△BEC和△CFA中∴△ABE≌△CFA(AAS)∴AF=CE,BE=CF∵EF=CE+CF,∴EF=BE+AF.【点睛】本题考查了全等三角形的性质和判定,证明△BCE≌△CAF是解题的关键.16.(2022秋·湖南永州·八年级统考期中)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=105°时,∠EDC=°,∠DEC=°;点D从点B向点C运动时,∠BDA逐渐变.(填“大”或“小”)。(2)当DC等于多少时,△ABD≌△DCE?请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.【答案】(1),小;(2)2,理由见解析;(3)或80
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年图书发行销售宣传渠道合约条款
- 2025年AR技术转让协议
- 2025年夜间城市观光合同
- 2025年出口信用保险保险合同(签名版)
- 二零二五版校园食堂食品安全合作协议3篇
- 2025版专业房产行纪委托买卖合同细则3篇
- 2024离婚涉及的竞业限制合同
- 2025年度高层建筑石材钢架施工安全防护与质量保证合同4篇
- 2024起诉离婚后子女抚养权及监护权纠纷调解服务协议3篇
- 二零二五年度租赁房屋租赁合同登记备案协议
- 服务器报价表
- 2025年高考化学试题分析及复习策略讲座
- 世界近代史-对接选择性必修 课件-高考统编版历史一轮复习
- 2024-2029年中国制浆系统行业市场现状分析及竞争格局与投资发展研究报告
- 大门封条模板
- 【“凡尔赛”网络流行语的形成及传播研究11000字(论文)】
- ppr管件注塑工艺
- 液化气站其他危险和有害因素辨识及分析
- 高中语文教学课例《劝学》课程思政核心素养教学设计及总结反思
- 中国农业银行小微企业信贷业务贷后管理办法规定
- 市政道路建设工程竣工验收质量自评报告
评论
0/150
提交评论