版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届江苏省泰州市名校高三第二次模拟考试卷数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A.2 B. C. D.2.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.43.若的展开式中的系数之和为,则实数的值为()A. B. C. D.14.已知命题,那么为()A. B.C. D.5.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里7.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是()A.这五年,出口总额之和比进口总额之和大B.这五年,2015年出口额最少C.这五年,2019年进口增速最快D.这五年,出口增速前四年逐年下降8.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B.4C. D.59.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A. B.C. D.10.已知,且,则()A. B. C. D.11.已知集合,,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为()A. B.或C. D.12.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知圆内接四边形ABCD,其中,,,,则__________.14.若为假,则实数的取值范围为__________.15.春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动.已知某种盆栽植物每株成活的概率为,各株是否成活相互独立.该学校的某班随机领养了此种盆栽植物10株,设为其中成活的株数,若的方差,,则________.16.已知关于的不等式对于任意恒成立,则实数的取值范围为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.18.(12分)已知函数.(1)若不等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,,满足,证明:.19.(12分)在锐角中,分别是角的对边,,,且.(1)求角的大小;(2)求函数的值域.20.(12分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.21.(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,,(单位:百米).(1)分别求,关于x的函数关系式;(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.22.(10分)已知函数,.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)求函数在上的最小值;(Ⅲ)若函数,当时,的最大值为,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值.【详解】解:设直线l的方程为y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由题意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦长|AB|=4.故选:C.【点睛】本题主要考查了椭圆的应用,直线与椭圆的关系.常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口.2.B【解析】
因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【详解】请在此输入详解!3.B【解析】
由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.4.B【解析】
利用特称命题的否定分析解答得解.【详解】已知命题,,那么是.故选:.【点睛】本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.5.D【解析】
结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.6.B【解析】
人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,计算,代入得到答案.【详解】由题意可知此人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,则,解得,从而可得,故.故选:.【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.7.D【解析】
根据统计图中数据的含义进行判断即可.【详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.8.B【解析】
还原几何体的直观图,可将此三棱锥放入长方体中,利用体积分割求解即可.【详解】如图,三棱锥的直观图为,体积.故选:B.【点睛】本题主要考查了锥体的体积的求解,利用的体积分割的方法,考查了空间想象力及计算能力,属于中档题.9.B【解析】
设,则,,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,,因为B,P,D三点共线,C,P,E三点共线,所以,,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.10.B【解析】分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得的值,之后借助于倍角公式,将待求的式子转化为关于的式子,代入从而求得结果.详解:根据题中的条件,可得为锐角,根据,可求得,而,故选B.点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的过程中,需要对已知真切求余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解.11.C【解析】
根据韦恩图可确定所表示集合为,根据一元二次不等式解法和定义域的求法可求得集合,根据补集和交集定义可求得结果.【详解】由韦恩图可知:阴影部分表示,,,.故选:.【点睛】本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合.12.C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,若数列{an}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由题意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【详解】由圆内接四边形的性质可得,.连接BD,在中,有.在中,.所以,则,所以.连接AC,同理可得,所以.所以.故答案为:【点睛】本题考查余弦定理解三角形,同角三角函数基本关系,意在考查方程思想,计算能力,属于中档题型,本题的关键是熟悉圆内接四边形的性质,对角互补.14.【解析】
由为假,可知为真,所以对任意实数恒成立,求出的最小值,令即可.【详解】因为为假,则其否定为真,即为真,所以对任意实数恒成立,所以.又,当且仅当,即时,等号成立,所以.故答案为:.【点睛】本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.15.【解析】
由题意可知:,且,从而可得值.【详解】由题意可知:∴,即,∴故答案为:【点睛】本题考查二项分布的实际应用,考查分析问题解决问题的能力,考查计算能力,属于中档题.16.【解析】
先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出的取值范围.【详解】解:由题可知,不等式对于任意恒成立,即,又因为,,对任意恒成立,设,其中,由不等式,可得:,则,当时等号成立,又因为在内有解,,则,即:,所以实数的取值范围:.故答案为:.【点睛】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【解析】
(1)过作的垂线,垂足为,易得,进一步可得;(2)利用导数求得最大值即可.【详解】(1)如图,过作的垂线,垂足为,在直角中,,,所以,同理,.(2)设,则,令,则,即.设,且,则当时,,所以单调递减;当时,,所以单调递增,所以当时,取得极小值,所以.因为,所以,又,所以,又,所以,所以,所以,所以能通过此钢管的铁棒最大长度为.【点睛】本题考查导数在实际问题中的应用,考查学生的数学运算求解能力,是一道中档题.18.(1)(2)见解析【解析】
(1)分离得到,求的最小值即可求得的取值范围;(2)先求出,得到,利用乘变化即可证明不等式.【详解】解:(1)设,∴在上单调递减,在上单调递增.故.∵有解,∴.即的取值范围为.(2),当且仅当时等号成立.∴,即.∵.当且仅当,,时等号成立.∴,即成立.【点睛】此题考查不等式的证明,注意定值乘变化的灵活应用,属于较易题目.19.(1);(2)【解析】
(1)由向量平行的坐标表示、正弦定理边化角和两角和差正弦公式可化简求得,进而得到;(2)利用两角和差余弦公式、二倍角和辅助角公式化简函数为,根据的范围可确定的范围,结合正弦函数图象可确定所求函数的值域.【详解】(1),,由正弦定理得:,即,,,,又,.(2)在锐角中,,..,,,,函数的值域为.【点睛】本题考查三角恒等变换、解三角形和三角函数性质的综合应用问题;涉及到共线向量的坐标表示、利用三角恒等变换公式化简求值、正弦定理边化角的应用、正弦型函数值域的求解等知识.20.(1),函数的单调递增区间为;(2).【解析】
(1)运用降幂公式和辅助角公式,把函数的解析式化为正弦型函数解析式形式,根据已知,可以求出的值,再结合正弦型函数的性质求出函数的单调递增区间;(2)由(1)结合已知,可以求出角的值,通过正弦定理把问题的取值范围转化为两边对角的正弦值的比值的取值范围,结合已知是锐角三角形,三角形内角和定理,最后求出的取值范围.【详解】解:(1)由已知,所以因此令得因此函数的单调递增区间为(2)由已知,∴由得,因此所以因为为锐角三角形,所以,解得因此,那么【点睛】本题考查了降幂公式、辅助角公式,考查了正弦定理,考查了正弦型三角函数的单调性,考查了数学运算能力.21.(1),.,.(2)当百米时,两条直道的长度之和取得最小值百米.【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得关于x的函数关系式;在和中,利用余弦定理,可得关于x的函数关系式.方法二:在中,可得,则有,化简整理即得;同理,化简整理即得.(2)由(1)和基本不等式,计算即得.【详解】解:(1),是边长为3的等边三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道长度关于x的函数关系式为,.在和中,由余弦定理,得①②因为M为的中点,所以.由①②,得,所以,所以.所以,直道长度关于x的函数关系式为,.法2:因为在中,,所以.所以,直道长度关于x的函数关系式为,.在中,因为M为的中点,所以.所以.所以,直道长度关于x的函数关系式为,.(2)由(1)得,两条直道的长度之和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年采购合同:电子产品批量采购及技术支持
- 2024版特种物品运输协议3篇
- 2024年版企业租车服务协议规范化文件版B版
- 2024庆阳房屋租赁及租后维护服务合同3篇
- 2024年私募股权投资基金投融资合作协议3篇
- 2024年美甲行业劳动合同样本
- 2024年度艺术品寄卖代理委托协议(含投资咨询)3篇
- 2024年版建筑总承包协议解除条款明细一
- 2024年绵阳地区标准房屋租赁协议格式版B版
- 2025年度智能家居产品形象拍摄合作协议3篇
- 常见酸和碱说课课件
- 2023-2024学年湖北省利川市小学语文六年级期末通关测试题详细参考答案解析
- 矿大毕业设计-固定式带式输送机设计
- 高考地理一轮复习课件+湖泊的水文特征
- 热动复习题材料热力学与动力学
- GB/T 19405.1-2003表面安装技术第1部分:表面安装元器件(SMDS)规范的标准方法
- GB/T 13275-1991一般用途离心通风机技术条件
- 弹塑性力学(浙江大学课件)
- 千年菩提路解说词
- 潍柴天然气发动机维修手册
- 配气机构的设计
评论
0/150
提交评论